IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v142y2006i1p269-28210.1007-s10479-006-6172-0.html
   My bibliography  Save this article

Semiconvergence in distribution of random closed sets with application to random optimization problems

Author

Listed:
  • Silvia Vogel

Abstract

The paper considers upper semicontinuous behavior in distribution of sequences of random closed sets. Semiconvergence in distribution will be described via convergence in distribution of random variables with values in a suitable topological space. Convergence statements for suitable functions of random sets are proved and the results are employed to derive stability statements for random optimization problems where the objective function and the constraint set are approximated simultaneously. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • Silvia Vogel, 2006. "Semiconvergence in distribution of random closed sets with application to random optimization problems," Annals of Operations Research, Springer, vol. 142(1), pages 269-282, February.
  • Handle: RePEc:spr:annopr:v:142:y:2006:i:1:p:269-282:10.1007/s10479-006-6172-0
    DOI: 10.1007/s10479-006-6172-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-6172-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-6172-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan J. King, 1989. "Generalized Delta Theorems for Multivalued Mappings and Measurable Selections," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 720-736, November.
    2. Alan J. King & R. Tyrrell Rockafellar, 1993. "Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 148-162, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Guerkan & A.Y. Oezge & S.M. Robinson, 1994. "Sample-Path Optimization in Simulation," Working Papers wp94070, International Institute for Applied Systems Analysis.
    2. Marcel Klatt & Axel Munk & Yoav Zemel, 2022. "Limit laws for empirical optimal solutions in random linear programs," Annals of Operations Research, Springer, vol. 315(1), pages 251-278, August.
    3. Baha Alzalg & Asma Gafour, 2023. "Convergence of a Weighted Barrier Algorithm for Stochastic Convex Quadratic Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 490-515, February.
    4. L. Dai & C. H. Chen & J. R. Birge, 2000. "Convergence Properties of Two-Stage Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 106(3), pages 489-509, September.
    5. Sanjay Mehrotra & M. Gokhan Ozevin, 2009. "Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse," Operations Research, INFORMS, vol. 57(4), pages 964-974, August.
    6. Zhang, Jie & He, Su-xiang & Wang, Quan, 2014. "A SAA nonlinear regularization method for a stochastic extended vertical linear complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 888-897.
    7. Shu Lu & Amarjit Budhiraja, 2013. "Confidence Regions for Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 545-568, August.
    8. Alfredo N. Iusem & Alejandro Jofré & Philip Thompson, 2019. "Incremental Constraint Projection Methods for Monotone Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 236-263, February.
    9. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2016. "A stochastic model for the integrated optimization on metro timetable and speed profile with uncertain train mass," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 424-445.
    10. Andreas Eichhorn & Werner Römisch, 2007. "Stochastic Integer Programming: Limit Theorems and Confidence Intervals," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 118-135, February.
    11. Rebecca Stockbridge & Güzin Bayraksan, 2016. "Variance reduction in Monte Carlo sampling-based optimality gap estimators for two-stage stochastic linear programming," Computational Optimization and Applications, Springer, vol. 64(2), pages 407-431, June.
    12. Hideaki Iiduka, 2021. "Inexact stochastic subgradient projection method for stochastic equilibrium problems with nonmonotone bifunctions: application to expected risk minimization in machine learning," Journal of Global Optimization, Springer, vol. 80(2), pages 479-505, June.
    13. Svetlozar T. Rachev & Werner Römisch, 2002. "Quantitative Stability in Stochastic Programming: The Method of Probability Metrics," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 792-818, November.
    14. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    15. T. Glenn Bailey & Paul A. Jensen & David P. Morton, 1999. "Response surface analysis of two‐stage stochastic linear programming with recourse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 753-776, October.
    16. Sun, Ran & Fan, Yueyue, 2024. "Stochastic OD demand estimation using stochastic programming," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    17. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    18. Shapiro, Alexander, 2008. "Asymptotics of minimax stochastic programs," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 150-157, February.
    19. Hsieh, Yu-Wei & Shi, Xiaoxia & Shum, Matthew, 2022. "Inference on estimators defined by mathematical programming," Journal of Econometrics, Elsevier, vol. 226(2), pages 248-268.
    20. Daniel Ralph & Huifu Xu, 2011. "Convergence of Stationary Points of Sample Average Two-Stage Stochastic Programs: A Generalized Equation Approach," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 568-592, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:142:y:2006:i:1:p:269-282:10.1007/s10479-006-6172-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.