IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v136y2005i1p35-4810.1007-s10479-005-2037-1.html
   My bibliography  Save this article

A Wavefront Approach to Center Location Problems with Barriers

Author

Listed:
  • L. Frießs
  • K. Klamroth
  • M. Sprau

Abstract

Center location problems have many applications, for example, in the public sector, and various different algorithms have been developed for their solution. This paper suggests a novel solution strategy to the problem that is based on the propagation of circular wavefronts. The approach is discussed theoretically and implemented both as a physical experiment and as a computer simulation. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • L. Frießs & K. Klamroth & M. Sprau, 2005. "A Wavefront Approach to Center Location Problems with Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 35-48, April.
  • Handle: RePEc:spr:annopr:v:136:y:2005:i:1:p:35-48:10.1007/s10479-005-2037-1
    DOI: 10.1007/s10479-005-2037-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-005-2037-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-005-2037-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P.M. Dearing & R. Segars, 2002. "Solving Rectilinear Planar Location Problems with Barriers by a Polynomial Partitioning," Annals of Operations Research, Springer, vol. 111(1), pages 111-133, March.
    2. P.M. Dearing & R. Segars, 2002. "An Equivalence Result for Single Facility Planar Location Problems with Rectilinear Distance and Barriers," Annals of Operations Research, Springer, vol. 111(1), pages 89-110, March.
    3. Richard L. Francis, 1967. "Letter to the Editor—Some Aspects of a Minimax Location Problem," Operations Research, INFORMS, vol. 15(6), pages 1163-1169, December.
    4. P.M. Dearing & H.W. Hamacher & K. Klamroth, 2002. "Dominating sets for rectilinear center location problems with polyhedral barriers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(7), pages 647-665, October.
    5. Klamroth, K., 2001. "A reduction result for location problems with polyhedral barriers," European Journal of Operational Research, Elsevier, vol. 130(3), pages 486-497, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelachankuttu, Hari & Batta, Rajan & Nagi, Rakesh, 2007. "Contour line construction for a new rectangular facility in an existing layout with rectangular departments," European Journal of Operational Research, Elsevier, vol. 180(1), pages 149-162, July.
    2. Canbolat, Mustafa S. & Wesolowsky, George O., 2010. "The rectilinear distance Weber problem in the presence of a probabilistic line barrier," European Journal of Operational Research, Elsevier, vol. 202(1), pages 114-121, April.
    3. Masashi Miyagawa, 2012. "Rectilinear distance to a facility in the presence of a square barrier," Annals of Operations Research, Springer, vol. 196(1), pages 443-458, July.
    4. Masashi Miyagawa, 2017. "Continuous location model of a rectangular barrier facility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 95-110, April.
    5. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Dearing & K. Klamroth & R. Segars, 2005. "Planar Location Problems with Block Distance and Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 117-143, April.
    2. Masashi Miyagawa, 2012. "Rectilinear distance to a facility in the presence of a square barrier," Annals of Operations Research, Springer, vol. 196(1), pages 443-458, July.
    3. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.
    4. Canbolat, Mustafa S. & Wesolowsky, George O., 2010. "The rectilinear distance Weber problem in the presence of a probabilistic line barrier," European Journal of Operational Research, Elsevier, vol. 202(1), pages 114-121, April.
    5. Byrne, Thomas & Kalcsics, Jörg, 2022. "Conditional facility location problems with continuous demand and a polygonal barrier," European Journal of Operational Research, Elsevier, vol. 296(1), pages 22-43.
    6. Canbolat, Mustafa S. & Wesolowsky, George O., 2012. "On the use of the Varignon frame for single facility Weber problems in the presence of convex barriers," European Journal of Operational Research, Elsevier, vol. 217(2), pages 241-247.
    7. Klamroth, K., 2004. "Algebraic properties of location problems with one circular barrier," European Journal of Operational Research, Elsevier, vol. 154(1), pages 20-35, April.
    8. Haase, Knut & Hoppe, Mirko, 2008. "Standortplanung unter Wettbewerb - Teil 1: Grundlagen," Discussion Papers 2/2008, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    9. Kelachankuttu, Hari & Batta, Rajan & Nagi, Rakesh, 2007. "Contour line construction for a new rectangular facility in an existing layout with rectangular departments," European Journal of Operational Research, Elsevier, vol. 180(1), pages 149-162, July.
    10. Masashi Miyagawa, 2017. "Continuous location model of a rectangular barrier facility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 95-110, April.
    11. Oğuz, Murat & Bektaş, Tolga & Bennell, Julia A., 2018. "Multicommodity flows and Benders decomposition for restricted continuous location problems," European Journal of Operational Research, Elsevier, vol. 266(3), pages 851-863.
    12. Malgorzata Miklas-Kalczynska & Pawel Kalczynski, 2024. "Multiple obnoxious facility location: the case of protected areas," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    13. Jack Brimberg & Robert F. Love, 1991. "Estimating travel distances by the weighted lp norm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 241-259, April.
    14. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    15. Gert Wanka & Oleg Wilfer, 2017. "Duality results for nonlinear single minimax location problems via multi-composed optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 401-439, October.
    16. P.M. Dearing & H.W. Hamacher & K. Klamroth, 2002. "Dominating sets for rectilinear center location problems with polyhedral barriers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(7), pages 647-665, October.
    17. Bischoff, M. & Klamroth, K., 2007. "An efficient solution method for Weber problems with barriers based on genetic algorithms," European Journal of Operational Research, Elsevier, vol. 177(1), pages 22-41, February.
    18. Piyush Kumar & E. Alper Yıldırım, 2009. "An Algorithm and a Core Set Result for the Weighted Euclidean One-Center Problem," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 614-629, November.
    19. Murat Oğuz & Tolga Bektaş & Julia A Bennell & Jörg Fliege, 2016. "A modelling framework for solving restricted planar location problems using phi-objects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(8), pages 1080-1096, August.
    20. M. T. Ko & R. C. T. Lee & J. S. Chang, 1990. "Rectilinear m‐Center problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 419-427, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:136:y:2005:i:1:p:35-48:10.1007/s10479-005-2037-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.