IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v111y2002i1p111-13310.1023-a1020997518554.html
   My bibliography  Save this article

Solving Rectilinear Planar Location Problems with Barriers by a Polynomial Partitioning

Author

Listed:
  • P.M. Dearing
  • R. Segars

Abstract

This paper considers planar location problems with rectilinear distance and barriers where the objective function is any convex, nondecreasing function of distance. Such problems have a non-convex feasible region and a nonconvex objective function. Based on an equivalent problem with modified barriers, derived in a companion paper [3], the non convex feasible set is partitioned into a network and rectangular cells. The rectangular cells are further partitioned into a polynomial number of convex subcells, called convex domains, on which the distance function, and hence the objective function, is convex. Then the problem is solved over the network and convex domains for an optimal solution. Bounds are given that reduce the number of convex domains to be examined. The number of convex domains is bounded above by a polynomial in the size of the problem. Copyright Kluwer Academic Publishers 2002

Suggested Citation

  • P.M. Dearing & R. Segars, 2002. "Solving Rectilinear Planar Location Problems with Barriers by a Polynomial Partitioning," Annals of Operations Research, Springer, vol. 111(1), pages 111-133, March.
  • Handle: RePEc:spr:annopr:v:111:y:2002:i:1:p:111-133:10.1023/a:1020997518554
    DOI: 10.1023/A:1020997518554
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1020997518554
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1020997518554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Dearing & K. Klamroth & R. Segars, 2005. "Planar Location Problems with Block Distance and Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 117-143, April.
    2. Canbolat, Mustafa S. & Wesolowsky, George O., 2010. "The rectilinear distance Weber problem in the presence of a probabilistic line barrier," European Journal of Operational Research, Elsevier, vol. 202(1), pages 114-121, April.
    3. Masashi Miyagawa, 2012. "Rectilinear distance to a facility in the presence of a square barrier," Annals of Operations Research, Springer, vol. 196(1), pages 443-458, July.
    4. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.
    5. L. Frießs & K. Klamroth & M. Sprau, 2005. "A Wavefront Approach to Center Location Problems with Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 35-48, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:111:y:2002:i:1:p:111-133:10.1023/a:1020997518554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.