IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v133y2005i1p119-12510.1007-s10479-004-5027-9.html
   My bibliography  Save this article

A Relaxed Approximate Proximal Point Algorithm

Author

Listed:
  • Zhenhua Yang
  • Bingsheng He

Abstract

For a maximal monotone operator T, a well-known overrelaxed point algorithm is often used to find the zeros of T. In this paper, we enhance the algorithm to find a point in $T^{-1}(0)\cap \mathcal{X}$ , where $\mathcal{X}$ is a given closed convex set. In the inexact case of our modified relaxed proximal point algorithm, we give a new criterion. The convergence analysis is quite easy to follow. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Zhenhua Yang & Bingsheng He, 2005. "A Relaxed Approximate Proximal Point Algorithm," Annals of Operations Research, Springer, vol. 133(1), pages 119-125, January.
  • Handle: RePEc:spr:annopr:v:133:y:2005:i:1:p:119-125:10.1007/s10479-004-5027-9
    DOI: 10.1007/s10479-004-5027-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-004-5027-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-004-5027-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan Eckstein, 1993. "Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 202-226, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Aragón Artacho & Michaël Gaydu, 2012. "A Lyusternik–Graves theorem for the proximal point method," Computational Optimization and Applications, Springer, vol. 52(3), pages 785-803, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    2. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    3. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    4. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
    5. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    6. M. Kyono & M. Fukushima, 2000. "Nonlinear Proximal Decomposition Method for Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 357-372, August.
    7. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework II: general methods and numerical experiments," Computational Optimization and Applications, Springer, vol. 51(2), pages 681-708, March.
    8. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
    9. Regina S. Burachik & Minh N. Dao & Scott B. Lindstrom, 2021. "Generalized Bregman Envelopes and Proximity Operators," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 744-778, September.
    10. Jein-Shan Chen & Shaohua Pan, 2010. "An entropy-like proximal algorithm and the exponential multiplier method for convex symmetric cone programming," Computational Optimization and Applications, Springer, vol. 47(3), pages 477-499, November.
    11. A. N. Iusem, 1998. "On Some Properties of Generalized Proximal Point Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 337-362, February.
    12. K. C. Kiwiel, 1998. "Generalized Bregman Projections in Convex Feasibility Problems," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 139-157, January.
    13. Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
    14. Nils Langenberg, 2012. "An Interior Proximal Method for a Class of Quasimonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 902-922, December.
    15. Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
    16. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    17. J. X. Cruz Neto & O. P. Ferreira & P. R. Oliveira & R. C. M. Silva, 2008. "Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 227-242, November.
    18. Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
    19. K. C. Kiwiel, 1998. "Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 159-173, January.
    20. Bonettini, Silvia & Prato, Marco & Rebegoldi, Simone, 2016. "A cyclic block coordinate descent method with generalized gradient projections," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 288-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:133:y:2005:i:1:p:119-125:10.1007/s10479-004-5027-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.