IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v96y1998i1d10.1023_a1022619318462.html
   My bibliography  Save this article

Generalized Bregman Projections in Convex Feasibility Problems

Author

Listed:
  • K. C. Kiwiel

    (Systems Research Institute)

Abstract

We present a method for finding common points of finitely many closed convex sets in Euclidean space. The Bregman extension of the classical method of cyclic orthogonal projections employs nonorthogonal projections induced by a convex Bregman function, whereas the Bauschke and Borwein method uses Bregman/Legendre functions. Our method works with generalized Bregman functions (B-functions) and inexact projections, which are easier to compute than the exact ones employed in other methods. We also discuss subgradient algorithms with Bregman projections.

Suggested Citation

  • K. C. Kiwiel, 1998. "Generalized Bregman Projections in Convex Feasibility Problems," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 139-157, January.
  • Handle: RePEc:spr:joptap:v:96:y:1998:i:1:d:10.1023_a:1022619318462
    DOI: 10.1023/A:1022619318462
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022619318462
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022619318462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan Eckstein, 1993. "Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 202-226, February.
    2. Krzysztof C. Kiwiel, 1997. "Free-Steering Relaxation Methods for Problems with Strictly Convex Costs and Linear Constraints," Mathematics of Operations Research, INFORMS, vol. 22(2), pages 326-349, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. C. Kiwiel, 1998. "Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 159-173, January.
    2. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    3. J. X. Cruz Neto & O. P. Ferreira & P. R. Oliveira & R. C. M. Silva, 2008. "Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 227-242, November.
    4. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    5. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    6. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
    7. Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
    8. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    9. Bonettini, Silvia & Prato, Marco & Rebegoldi, Simone, 2016. "A cyclic block coordinate descent method with generalized gradient projections," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 288-300.
    10. M. Kyono & M. Fukushima, 2000. "Nonlinear Proximal Decomposition Method for Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 357-372, August.
    11. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework II: general methods and numerical experiments," Computational Optimization and Applications, Springer, vol. 51(2), pages 681-708, March.
    12. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
    13. Regina S. Burachik & Minh N. Dao & Scott B. Lindstrom, 2021. "Generalized Bregman Envelopes and Proximity Operators," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 744-778, September.
    14. M. V. Solodov & B. F. Svaiter, 2000. "An Inexact Hybrid Generalized Proximal Point Algorithm and Some New Results on the Theory of Bregman Functions," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 214-230, May.
    15. Spyridon Pougkakiotis & Jacek Gondzio, 2021. "An interior point-proximal method of multipliers for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 78(2), pages 307-351, March.
    16. S. H. Pan & J. S. Chen, 2008. "Proximal-Like Algorithm Using the Quasi D-Function for Convex Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 138(1), pages 95-113, July.
    17. Jein-Shan Chen & Shaohua Pan, 2010. "An entropy-like proximal algorithm and the exponential multiplier method for convex symmetric cone programming," Computational Optimization and Applications, Springer, vol. 47(3), pages 477-499, November.
    18. A. N. Iusem, 1998. "On Some Properties of Generalized Proximal Point Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 337-362, February.
    19. Nils Langenberg & Rainer Tichatschke, 2012. "Interior proximal methods for quasiconvex optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 641-661, March.
    20. Hong T. M. Chu & Ling Liang & Kim-Chuan Toh & Lei Yang, 2023. "An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems," Computational Optimization and Applications, Springer, vol. 85(1), pages 107-146, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:96:y:1998:i:1:d:10.1023_a:1022619318462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.