IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v90y2006i1p121-136.html
   My bibliography  Save this article

Multilevel and nonlinear panel data models

Author

Listed:
  • Olaf Hübler

Abstract

This paper presents a selective survey on panel data methods. The focus is on new developments. In particular, linear multilevel models, specific nonlinear, nonparametric and semiparametric models are at the center of the survey. In contrast to linear models there do not exist unified methods for nonlinear approaches. In this case conditional maximum likelihood methods dominate for fixed effects models. Under random effects assumptions it is sometimes possible to employ conventional maximum likelihood methods using Gaussian quadrature to reduce a T-dimensional integral. Alternatives are generalized methods of moments and simulated estimators. If the nonlinear function is not exactly known, nonparametric or semiparametric methods should be preferred.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Olaf Hübler, 2006. "Multilevel and nonlinear panel data models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 121-136, March.
  • Handle: RePEc:spr:alstar:v:90:y:2006:i:1:p:121-136
    DOI: 10.1007/s10182-006-0225-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10182-006-0225-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10182-006-0225-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bo Honore & Ekaterini Kyriazidou & J. L. Powell, 2000. "Estimation of tobit-type models with individual specific effects," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 341-366.
    2. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    3. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    4. John M. Abowd & Francis Kramarz & David N. Margolis, 1999. "High Wage Workers and High Wage Firms," Econometrica, Econometric Society, vol. 67(2), pages 251-334, March.
    5. William Greene, 2004. "Convenient estimators for the panel probit model: Further results," Empirical Economics, Springer, vol. 29(1), pages 21-47, January.
    6. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    7. König, Anja, 1997. "Schätzen und Testen in semiparametrischen partiell linearen Modellen für die Paneldatenanalyse," Hannover Economic Papers (HEP) dp-208, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    8. Matyas,Laszlo (ed.), 1999. "Generalized Method of Moments Estimation," Cambridge Books, Cambridge University Press, number 9780521669672, September.
    9. Wansbeek, Tom & Kapteyn, Arie, 1989. "Estimation of the error-components model with incomplete panels," Journal of Econometrics, Elsevier, vol. 41(3), pages 341-361, July.
    10. Li, Qi & Stengos, Thanasis, 1996. "Semiparametric estimation of partially linear panel data models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 389-397.
    11. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    12. John M. Abowd & Robert H. Creecy & Francis Kramarz, 2002. "Computing Person and Firm Effects Using Linked Longitudinal Employer-Employee Data," Longitudinal Employer-Household Dynamics Technical Papers 2002-06, Center for Economic Studies, U.S. Census Bureau.
    13. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    14. Bertschek, Irene & Lechner, Michael, 1998. "Convenient estimators for the panel probit model," Journal of Econometrics, Elsevier, vol. 87(2), pages 329-371, September.
    15. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    16. Matyas,Laszlo (ed.), 1999. "Generalized Method of Moments Estimation," Cambridge Books, Cambridge University Press, number 9780521660136, September.
    17. Andrew Hildreth & Stephen Pudney, "undated". "Econometric Issues in the Analysis of Linked Cross-Section Employer-Worker Surveys," Discussion Papers in Public Sector Economics 98/3, Division of Economics, School of Business, University of Leicester.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daria Pus & László Mátyás & Cecilia Hornok, 2013. "Modelling Firm-Product Level Trade: A Multi-Dimensional Random Effects Panel Data Approach," CEU Working Papers 2013_2, Department of Economics, Central European University, revised 08 May 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hübler, Olaf, 2005. "Panel Data Econometrics: Modelling and Estimation," Hannover Economic Papers (HEP) dp-319, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    2. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    3. Andrews, Martyn J. & Schank, Thorsten & Upward, Richard, 2004. "Practical estimation methods for linked employer-employee data," Discussion Papers 29, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    4. Woodcock Simon D, 2010. "Heterogeneity and Learning in Labor Markets," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-69, September.
    5. Mittag, Nikolas, 2012. "New methods to estimate models with large sets of fixed effects with an application to matched employer-employee data from Germany," FDZ Methodenreport 201201_en, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    6. repec:iab:iabfme:201201(en is not listed on IDEAS
    7. Lechner, Michael & Lollivier, Stefan & Magnac, Thierry, 2005. "Parametric Binary Choice Models," IDEI Working Papers 398, Institut d'Économie Industrielle (IDEI), Toulouse.
    8. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    9. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    10. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    11. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    12. Mittag, Nikolas, 2016. "A Simple Method to Estimate Large Fixed Effects Models Applied to Wage Determinants and Matching," IZA Discussion Papers 10447, Institute of Labor Economics (IZA).
    13. Christian A. Vossler, 2013. "Analyzing repeated-game economics experiments: robust standard errors for panel data with serial correlation," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 3, pages 89-112, Edward Elgar Publishing.
    14. Jesse Rothstein, 2010. "Teacher Quality in Educational Production: Tracking, Decay, and Student Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 175-214.
    15. Majid M. Al-Sadoon & Tong Li & M. Hashem Pesaran, 2017. "Exponential class of dynamic binary choice panel data models with fixed effects," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 898-927, October.
    16. Woodcock, Simon D., 2023. "The determinants of displaced workers’ wages: Sorting, matching, selection, and the Hartz reforms," Journal of Econometrics, Elsevier, vol. 233(2), pages 568-595.
    17. Li, Cong & Liang, Zhongwen, 2015. "Asymptotics for nonparametric and semiparametric fixed effects panel models," Journal of Econometrics, Elsevier, vol. 185(2), pages 420-434.
    18. Mittag, Nikolas, 2019. "A simple method to estimate large fixed effects models applied to wage determinants," Labour Economics, Elsevier, vol. 61(C).
    19. Simon Woodcock, 2022. "The Determinants of Displaced Workers’ Wages: Sorting, Matching, Selection, and the Hartz Reforms," Discussion Papers dp22-04, Department of Economics, Simon Fraser University.
    20. Belderbos, Rene & Carree, Martin & Diederen, Bert & Lokshin, Boris & Veugelers, Reinhilde, 2004. "Heterogeneity in R&D cooperation strategies," International Journal of Industrial Organization, Elsevier, vol. 22(8-9), pages 1237-1263, November.
    21. Woodcock, Simon D., 2020. "The Effect of the Hartz Labor Market Reforms on Post-unemployment Wages, Sorting, and Matching," IZA Discussion Papers 13300, Institute of Labor Economics (IZA).

    More about this item

    Keywords

    Panel data; linear; multilevel; nonlinear; non- and semiparametric models JEL C14; C33; C35;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:90:y:2006:i:1:p:121-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.