IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v103y2019i3d10.1007_s10182-018-00330-4.html
   My bibliography  Save this article

Surveillance of non-stationary processes

Author

Listed:
  • Taras Lazariv

    (Technical University Dresden)

  • Wolfgang Schmid

    (European University Viadrina)

Abstract

In nearly all papers on process control for time-dependent data, it is assumed that the underlying target process is stationary. In the present paper, the target process is modeled by a multivariate state-space model which may be non-stationary. Our aim is to monitor its mean behavior. The likelihood ratio method, the sequential probability ratio test and the Shiryaev–Roberts procedure are applied to derive control charts signaling a change from the supposed mean structure. These procedures depend on certain reference values which have to be chosen by the practitioners. The corresponding generalized approaches are considered as well, and generalized control charts are determined for state-space processes. These schemes do not have further design parameters. In an extensive simulation study, the behavior of the introduced schemes is compared with each other using various performance criteria like the average run length, the average delay, the probability of a successful detection, and the probability of a false detection.

Suggested Citation

  • Taras Lazariv & Wolfgang Schmid, 2019. "Surveillance of non-stationary processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 305-331, September.
  • Handle: RePEc:spr:alstar:v:103:y:2019:i:3:d:10.1007_s10182-018-00330-4
    DOI: 10.1007/s10182-018-00330-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-018-00330-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-018-00330-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marianne Frisén, 2003. "Statistical Surveillance. Optimality and Methods," International Statistical Review, International Statistical Institute, vol. 71(2), pages 403-434, August.
    2. Olha Bodnar & Wolfgang Schmid, 2007. "Surveillance of the mean behavior of multivariate time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 383-406, November.
    3. Sven Knoth & Marianne Frisén, 2012. "Minimax optimality of CUSUM for an autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(4), pages 357-379, November.
    4. Margavio, Thomas M. & Conerly, Michael D. & Woodall, William H. & Drake, Laurel G., 1995. "Alarm rates for quality control charts," Statistics & Probability Letters, Elsevier, vol. 24(3), pages 219-224, August.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    6. Alwan, Layth C & Roberts, Harry V, 1988. "Time-Series Modeling for Statistical Process Control," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 87-95, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Garthoff & Iryna Okhrin & Wolfgang Schmid, 2014. "Statistical surveillance of the mean vector and the covariance matrix of nonlinear time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 225-255, July.
    2. Frisén, Marianne, 2011. "Inference Principles For Multivariate Surveillance," Research Reports 2011:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    3. Golosnoy, Vasyl & Ragulin, Sergiy & Schmid, Wolfgang, 2011. "CUSUM control charts for monitoring optimal portfolio weights," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2991-3009, November.
    4. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    5. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    6. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1, October.
    7. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    8. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    9. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    10. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    11. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    12. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    13. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    14. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    15. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    16. Oreste Napolitano & Alberto Montagnoli, 2010. "The European Unemployment Gap and the Role of Monetary Policy," Economics Bulletin, AccessEcon, vol. 30(2), pages 1346-1358.
    17. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    18. Samari, Goleen & Catalano, Ralph & Alcalá, Héctor E. & Gemmill, Alison, 2020. "The Muslim Ban and preterm birth: Analysis of U.S. vital statistics data from 2009 to 2018," Social Science & Medicine, Elsevier, vol. 265(C).
    19. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    20. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:103:y:2019:i:3:d:10.1007_s10182-018-00330-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.