IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v82y2015icp59-73.html
   My bibliography  Save this article

Double Generalized Threshold Models with constraint on the dispersion by the mean

Author

Listed:
  • Wu, K.Y.K.
  • Li, W.K.

Abstract

Generalized Threshold Model (GTM) is a non-linear time series model which generalizes the Threshold Autoregressive Model (TAR) to implement the idea of the Generalized Linear Model under the threshold time series framework. However, the dispersion parameter is usually assumed as constant in the context of Generalized Linear Model which does not hold in general. In this paper, the GTM is extended to a Double Generalized Threshold Model (DGTM) where the dispersion parameter, defined as the expected deviance of the individual response about its mean, varies throughout the entire sample. The variation of the dispersion parameter can be predicted by another threshold type generalized linear model, which is interlinked with the threshold model for the mean and can be estimated simultaneously.

Suggested Citation

  • Wu, K.Y.K. & Li, W.K., 2015. "Double Generalized Threshold Models with constraint on the dispersion by the mean," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 59-73.
  • Handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:59-73
    DOI: 10.1016/j.csda.2014.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314002357
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noelle I. Samia & Kung-Sik Chan & Nils Chr. Stenseth, 2007. "A generalized threshold mixed model for analyzing nonnormal nonlinear time series, with application to plague in Kazakhstan," Biometrika, Biometrika Trust, vol. 94(1), pages 101-118.
    2. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    3. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, November.
    4. Chao Wang & Heng Liu & Jian-Feng Yao & Richard A. Davis & Wai Keung Li, 2014. "Self-Excited Threshold Poisson Autoregression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 777-787, June.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Noelle I. Samia & Kung-Sik Chan, 2011. "Maximum likelihood estimation of a generalized threshold stochastic regression model," Biometrika, Biometrika Trust, vol. 98(2), pages 433-448.
    7. Li, Dong & Ling, Shiqing & Li, Wai Keung, 2013. "Asymptotic Theory On The Least Squares Estimation Of Threshold Moving-Average Models," Econometric Theory, Cambridge University Press, vol. 29(3), pages 482-516, June.
    8. Shiqing Ling, 2004. "Estimation and testing stationarity for double‐autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 63-78, February.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dong & Ling, Shiqing & Zakoïan, Jean-Michel, 2015. "Asymptotic inference in multiple-threshold double autoregressive models," Journal of Econometrics, Elsevier, vol. 189(2), pages 415-427.
    2. Dong Li & Shiqing Ling & Rongmao Zhang, 2016. "On a Threshold Double Autoregressive Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 68-80, January.
    3. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Christian M. Dahl & Emma M. Iglesias, 2008. "The limiting properties of the QMLE in a general class of asymmetric volatility models," CREATES Research Papers 2008-38, Department of Economics and Business Economics, Aarhus University.
    5. Martinez Oscar & Olmo Jose, 2012. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
    6. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    7. Guo, Shaojun & Li, Dong & Li, Muyi, 2019. "Strict stationarity testing and GLAD estimation of double autoregressive models," Journal of Econometrics, Elsevier, vol. 211(2), pages 319-337.
    8. Wang, Gaowen, 2006. "A note on unit root tests with heavy-tailed GARCH errors," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1075-1079, May.
    9. Sergii Pypko, 2015. "Volatility Forecast in Crises and Expansions," JRFM, MDPI, vol. 8(3), pages 1-26, August.
    10. Anthony J. Lawrance, 2010. "Volatile ARMA Modelling of GARCH Squares," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(3), pages 195-203, June.
    11. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, November.
    12. Iglesias Emma M, 2009. "Finite Sample Theory of QMLEs in ARCH Models with an Exogenous Variable in the Conditional Variance Equation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    13. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    14. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    15. Ke Zhu & Wai Keung Li & Philip L. H. Yu, 2017. "Buffered Autoregressive Models With Conditional Heteroscedasticity: An Application to Exchange Rates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 528-542, October.
    16. Dong Li & Shiqing Ling & Jean-Michel Zakoian, 2013. "Asymptotic Inference in Multiple-Threshold Nonlinear Time Series Models," Working Papers 2013-51, Center for Research in Economics and Statistics.
    17. Andrew Hodge & Sriram Shankar, 2016. "Single-Variable Threshold Effects in Ordered Response Models With an Application to Estimating the Income-Happiness Gradient," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 42-52, January.
    18. Zhu, Qianqian & Zheng, Yao & Li, Guodong, 2018. "Linear double autoregression," Journal of Econometrics, Elsevier, vol. 207(1), pages 162-174.
    19. Min Chen & Dong Li & Shiqing Ling, 2014. "Non-Stationarity And Quasi-Maximum Likelihood Estimation On A Double Autoregressive Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 189-202, May.
    20. Guodong Li & Qianqian Zhu & Zhao Liu & Wai Keung Li, 2017. "On Mixture Double Autoregressive Time Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 306-317, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:59-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.