IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v86y2023i7d10.1007_s00184-023-00894-5.html
   My bibliography  Save this article

A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application

Author

Listed:
  • Huaping Chen

    (Henan University)

  • Qi Li

    (Changchun Normal University)

  • Fukang Zhu

    (Jilin University)

Abstract

This paper considers the modeling problem of the weekly number of districts with new cases of cryptosporidiosis infection, and proposes a covariate-driven beta-binomial integer-valued GARCH model with a logit transformation to illustrate such bounded integer-valued time series data with extra-binomial variation and high volatility. We establish the existence of the stationary and ergodic solution by imposing a contraction condition on its conditional mean process and a Markov structure on the incorporated covariate process, consider the conditional maximum likelihood (CML) estimator for the parameter vector and discuss its asymptotic properties, conduct a simulation study to examine the finite sample performance of the CML estimator for the proposed model with three data generating mechanisms of the covariate process. Finally, an application to the weekly number of districts with new cases of cryptosporidiosis infection is considered to illustrate the superior performance of the proposed model.

Suggested Citation

  • Huaping Chen & Qi Li & Fukang Zhu, 2023. "A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 805-826, October.
  • Handle: RePEc:spr:metrik:v:86:y:2023:i:7:d:10.1007_s00184-023-00894-5
    DOI: 10.1007/s00184-023-00894-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-023-00894-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-023-00894-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aknouche, Abdelhakim & Francq, Christian, 2021. "Count And Duration Time Series With Equal Conditional Stochastic And Mean Orders," Econometric Theory, Cambridge University Press, vol. 37(2), pages 248-280, April.
    2. Doukhan, Paul & Wintenberger, Olivier, 2008. "Weakly dependent chains with infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 1997-2013, November.
    3. Agosto, Arianna & Cavaliere, Giuseppe & Kristensen, Dennis & Rahbek, Anders, 2016. "Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 640-663.
    4. Christian H. Weiß & Philip K. Pollett, 2014. "Binomial Autoregressive Processes With Density-Dependent Thinning," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 115-132, March.
    5. Cathy W. S. Chen & Khemmanant Khamthong & Sangyeol Lee, 2019. "Markov switching integer‐valued generalized auto‐regressive conditional heteroscedastic models for dengue counts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(4), pages 963-983, August.
    6. E. Ursu & Jean-Christophe Pereau, 2017. "Estimation and identification of periodic autoregressive models with one exogenous variable," Post-Print hal-02485120, HAL.
    7. Hee-Young Kim & Christian H. Weiß & Tobias A. Möller, 2020. "Models for autoregressive processes of bounded counts: How different are they?," Computational Statistics, Springer, vol. 35(4), pages 1715-1736, December.
    8. Paolo Gorgi, 2020. "Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1325-1347, December.
    9. Huaping Chen & Qi Li & Fukang Zhu, 2021. "Binomial AR(1) processes with innovational outliers," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(2), pages 446-472, January.
    10. Christian H. Weiß & Philip K. Pollett, 2012. "Chain Binomial Models and Binomial Autoregressive Processes," Biometrics, The International Biometric Society, vol. 68(3), pages 815-824, September.
    11. Huaping Chen & Qi Li & Fukang Zhu, 2022. "A new class of integer-valued GARCH models for time series of bounded counts with extra-binomial variation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 243-270, June.
    12. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    13. Richard A. Davis & Konstantinos Fokianos & Scott H. Holan & Harry Joe & James Livsey & Robert Lund & Vladas Pipiras & Nalini Ravishanker, 2021. "Count Time Series: A Methodological Review," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1533-1547, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Rui, 2024. "Asymmetric beta-binomial GARCH models for time series with bounded support," Applied Mathematics and Computation, Elsevier, vol. 470(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huaping Chen & Qi Li & Fukang Zhu, 2022. "A new class of integer-valued GARCH models for time series of bounded counts with extra-binomial variation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 243-270, June.
    2. Weiß, Christian H. & Zhu, Fukang, 2024. "Conditional-mean multiplicative operator models for count time series," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    3. Huaping Chen, 2023. "A New Soft-Clipping Discrete Beta GARCH Model and Its Application on Measles Infection," Stats, MDPI, vol. 6(1), pages 1-19, February.
    4. Giovanni Angelini & Giuseppe Cavaliere & Enzo D'Innocenzo & Luca De Angelis, 2022. "Time-Varying Poisson Autoregression," Papers 2207.11003, arXiv.org.
    5. Yao Kang & Shuhui Wang & Dehui Wang & Fukang Zhu, 2023. "Analysis of zero-and-one inflated bounded count time series with applications to climate and crime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 34-73, March.
    6. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    8. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    9. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    10. Aknouche, Abdelhakim & Gouveia, Sonia & Scotto, Manuel, 2023. "Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs," MPRA Paper 119518, University Library of Munich, Germany, revised 18 Dec 2023.
    11. Aknouche, Abdelhakim & Scotto, Manuel, 2022. "A multiplicative thinning-based integer-valued GARCH model," MPRA Paper 112475, University Library of Munich, Germany.
    12. Stefano Cabras, 2021. "A Bayesian-Deep Learning Model for Estimating COVID-19 Evolution in Spain," Mathematics, MDPI, vol. 9(22), pages 1-18, November.
    13. Tobias A. Möller & Christian H. Weiß & Hee-Young Kim & Andrei Sirchenko, 2018. "Modeling Zero Inflation in Count Data Time Series with Bounded Support," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 589-609, June.
    14. Mengya Liu & Qi Li & Fukang Zhu, 2020. "Self-excited hysteretic negative binomial autoregression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 385-415, September.
    15. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
    16. Huaping Chen & Fukang Zhu & Xiufang Liu, 2022. "A New Bivariate INAR(1) Model with Time-Dependent Innovation Vectors," Stats, MDPI, vol. 5(3), pages 1-22, August.
    17. Zhang, Rui, 2024. "Asymmetric beta-binomial GARCH models for time series with bounded support," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    18. Lee, Sangyeol & Kim, Dongwon & Kim, Byungsoo, 2023. "Modeling and inference for multivariate time series of counts based on the INGARCH scheme," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    19. Han Li & Zijian Liu & Kai Yang & Xiaogang Dong & Wenshan Wang, 2024. "A pth-order random coefficients mixed binomial autoregressive process with explanatory variables," Computational Statistics, Springer, vol. 39(5), pages 2581-2604, July.
    20. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:86:y:2023:i:7:d:10.1007_s00184-023-00894-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.