IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v8y2005i2p251-276.html
   My bibliography  Save this article

Non-linear GARCH models for highly persistent volatility

Author

Listed:
  • Markku Lanne
  • Pentti Saikkonen

Abstract

In this paper we study a new class of nonlinear GARCH models. Special interest is devoted to models that are similar to previously introduced smooth transition GARCH models except for the novel feature that a lagged value of conditional variance is used as the transition variable. This choice of the transition variable is mainly motivated by the desire to find useful models for highly persistent volatility. The underlying idea is that high persistence in conditional variance is related to relatively infrequent changes in regime, which can be captured by a suitable specification of the new model. Using the theory of Markov chains, we provide sufficient conditions for the stationarity and existence of moments of various smooth transition GARCH models and even more general nonlinear GARCH models. An empirical application to an exchange rate return series demonstrates the differences between the new model and conventional GARCH models. Copyright 2005 Royal Economic Society

Suggested Citation

  • Markku Lanne & Pentti Saikkonen, 2005. "Non-linear GARCH models for highly persistent volatility," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 251-276, July.
  • Handle: RePEc:ect:emjrnl:v:8:y:2005:i:2:p:251-276
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:8:y:2005:i:2:p:251-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.