IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i2p533-546.html
   My bibliography  Save this article

Nonparametric analysis of nonhomogeneous multistate processes with clustered observations

Author

Listed:
  • Giorgos Bakoyannis

Abstract

Frequently, clinical trials and observational studies involve complex event history data with multiple events. When the observations are independent, the analysis of such studies can be based on standard methods for multistate models. However, the independence assumption is often violated, such as in multicenter studies, which makes standard methods improper. This work addresses the issue of nonparametric estimation and two‐sample testing for the population‐averaged transition and state occupation probabilities under general multistate models with cluster‐correlated, right‐censored, and/or left‐truncated observations. The proposed methods do not impose assumptions regarding the within‐cluster dependence, allow for informative cluster size, and are applicable to both Markov and non‐Markov processes. Using empirical process theory, the estimators are shown to be uniformly consistent and to converge weakly to tight Gaussian processes. Closed‐form variance estimators are derived, rigorous methodology for the calculation of simultaneous confidence bands is proposed, and the asymptotic properties of the nonparametric tests are established. Furthermore, I provide theoretical arguments for the validity of the nonparametric cluster bootstrap, which can be readily implemented in practice regardless of how complex the underlying multistate model is. Simulation studies show that the performance of the proposed methods is good, and that methods that ignore the within‐cluster dependence can lead to invalid inferences. Finally, the methods are illustrated using data from a multicenter randomized controlled trial.

Suggested Citation

  • Giorgos Bakoyannis, 2021. "Nonparametric analysis of nonhomogeneous multistate processes with clustered observations," Biometrics, The International Biometric Society, vol. 77(2), pages 533-546, June.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:533-546
    DOI: 10.1111/biom.13327
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13327
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Datta, Somnath & Satten, Glen A., 2001. "Validity of the Aalen-Johansen estimators of stage occupation probabilities and Nelson-Aalen estimators of integrated transition hazards for non-Markov models," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 403-411, December.
    2. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    3. Shaun R. Seaman & Menelaos Pavlou & Andrew J. Copas, 2014. "Methods for observed-cluster inference when cluster size is informative: A review and clarifications," Biometrics, The International Biometric Society, vol. 70(2), pages 449-456, June.
    4. Chen, Baojiang & Zhou, Xiao-Hua, 2013. "A correlated random effects model for non-homogeneous Markov processes with nonignorable missingness," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 1-13.
    5. C. A. Field & A. H. Welsh, 2007. "Bootstrapping clustered data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 369-390, June.
    6. Thomas H. Scheike & Mei‐Jie Zhang, 2007. "Direct Modelling of Regression Effects for Transition Probabilities in Multistate Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 17-32, March.
    7. Giorgos Bakoyannis, 2020. "Nonparametric tests for transition probabilities in nonhomogeneous Markov processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(1), pages 131-156, January.
    8. Richard J. Cook & Grace Y. Yi & Ker-Ai Lee & Dafna D. Gladman, 2004. "A Conditional Markov Model for Clustered Progressive Multistate Processes under Incomplete Observation," Biometrics, The International Biometric Society, vol. 60(2), pages 436-443, June.
    9. Sean Yiu & Vernon T. Farewell & Brian D. M. Tom, 2018. "Clustered multistate models with observation level random effects, mover–stayer effects and dynamic covariates: modelling transition intensities and sojourn times in a study of psoriatic arthritis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 481-500, February.
    10. Aidan G. O’Keeffe & Li Su & Vernon T. Farewell, 2018. "Correlated multistate models for multiple processes: an application to renal disease progression in systemic lupus erythematosus," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 841-860, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgos Bakoyannis & Dipankar Bandyopadhyay, 2022. "Nonparametric tests for multistate processes with clustered data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 837-867, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    2. Chuoxin Ma & Jianxin Pan, 2022. "Multistate analysis of multitype recurrent event and failure time data with event feedbacks in biomarkers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 864-885, June.
    3. Arthur Allignol & Martin Schumacher & Jan Beyersmann, 2011. "Estimating summary functionals in multistate models with an application to hospital infection data," Computational Statistics, Springer, vol. 26(2), pages 181-197, June.
    4. Giorgos Bakoyannis & Dipankar Bandyopadhyay, 2022. "Nonparametric tests for multistate processes with clustered data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 837-867, October.
    5. Orth, Walter, 2010. "The predictive accuracy of credit ratings: Measurement and statistical inference," MPRA Paper 30148, University Library of Munich, Germany, revised 16 Feb 2011.
    6. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    7. Chen, Baojiang & Zhou, Xiao-Hua, 2013. "A correlated random effects model for non-homogeneous Markov processes with nonignorable missingness," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 1-13.
    8. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    9. Jacobo de Uña-Álvarez & Luís Meira-Machado, 2015. "Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study," Biometrics, The International Biometric Society, vol. 71(2), pages 364-375, June.
    10. Mathieu Bunel, 2012. "Evaluer un dispositif sectoriel d'aide à l'emploi : L'exemple des hôtels cafés restaurants de 2004 à 2009," Working Papers halshs-00736693, HAL.
    11. repec:jss:jstsof:38:i08 is not listed on IDEAS
    12. Gustavo Soutinho & Luís Meira-Machado, 2022. "Methods for checking the Markov condition in multi-state survival data," Computational Statistics, Springer, vol. 37(2), pages 751-780, April.
    13. Dennis Dobler & Andrew Titman, 2020. "Dynamic inference for non‐Markov transition probabilities under random right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 572-586, June.
    14. Bella Vakulenko-Lagun & Micha Mandel & Yair Goldberg, 2017. "Nonparametric estimation in the illness-death model using prevalent data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 25-56, January.
    15. Tianyu Zhan & Douglas E. Schaubel, 2019. "Semiparametric temporal process regression of survival-out-of-hospital," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 322-340, April.
    16. Samanta, Mayukh & Welsh, A.H., 2013. "Bootstrapping for highly unbalanced clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 70-81.
    17. Samira Rousselière & Gaëlle Petit & Thomas Coisnon & Anne Musson & Damien Rousselière, 2022. "A few drinks behind—Alcohol price and income elasticities in Europe: A microeconometric note," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 301-315, February.
    18. Coisnon, Thomas & Rousselière, Damien & Rousselière, Samira, 2018. "Information on biodiversity and environmental behaviors: a European study of individual and institutional drivers to adopt sustainable gardening practices," Working Papers 272611, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    19. David V. Glidden, 2002. "Robust Inference for Event Probabilities with Non-Markov Event Data," Biometrics, The International Biometric Society, vol. 58(2), pages 361-368, June.
    20. Rune Hoff & Hein Putter & Ingrid Sivesind Mehlum & Jon Michael Gran, 2019. "Landmark estimation of transition probabilities in non-Markov multi-state models with covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 660-680, October.
    21. Robin Van Oirbeek & Emmanuel Lesaffre, 2018. "An Investigation of the Discriminatory Ability of the Clustering Effect of the Frailty Survival Model," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(3), pages 87-98, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:533-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.