IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v193y2016i1p76-91.html
   My bibliography  Save this article

Multivariate and multiple permutation tests

Author

Listed:
  • Chung, EunYi
  • Romano, Joseph P.

Abstract

In this article, we consider the use of permutation tests for comparing multivariate parameters from two populations. First, the underlying properties of permutation tests when comparing parameter vectors from two distributions P and Q are developed. Although an exact level α test can be constructed by a permutation test when the fundamental assumption of identical underlying distributions holds, permutation tests have often been misused. Indeed, permutation tests have frequently been applied in cases where the underlying distributions need not be identical under the null hypothesis. In such cases, permutation tests fail to control the Type 1 error, even asymptotically. However, we provide valid procedures in the sense that even when the assumption of identical distributions fails, one can establish the asymptotic validity of permutation tests in general while retaining the exactness property when all the observations are i.i.d. In the multivariate testing problem for testing the global null hypothesis of equality of parameter vectors, a modified Hotelling’s T2-statistic as well as tests based on the maximum of studentized absolute differences are considered. In the latter case, a bootstrap prepivoting test statistic is constructed, which leads to a bootstrapping after permuting algorithm. Then, these tests are applied as a basis for testing multiple hypotheses simultaneously by invoking the closure method to control the Familywise Error Rate. Lastly, Monte Carlo simulation studies and an empirical example are presented.

Suggested Citation

  • Chung, EunYi & Romano, Joseph P., 2016. "Multivariate and multiple permutation tests," Journal of Econometrics, Elsevier, vol. 193(1), pages 76-91.
  • Handle: RePEc:eee:econom:v:193:y:2016:i:1:p:76-91
    DOI: 10.1016/j.jeconom.2016.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407616300021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2016.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Pauly & Edgar Brunner & Frank Konietschke, 2015. "Asymptotic permutation tests in general factorial designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 461-473, March.
    2. Romano Joseph P. & Shaikh Azeem & Wolf Michael, 2011. "Consonance and the Closure Method in Multiple Testing," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-25, February.
    3. Babu, G. Jogesh & Rao, C. Radhakrishna, 1988. "Joint asymptotic distribution of marginal quantiles and quantile functions in samples from a multivariate population," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 15-23, October.
    4. Politis, Dimitris N. & Romano, Joseph P. & Wolf, Michael, 1999. "On the asymptotic theory of subsampling," DES - Working Papers. Statistics and Econometrics. WS 6334, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Gary Charness & Uri Gneezy, 2009. "Incentives to Exercise," Econometrica, Econometric Society, vol. 77(3), pages 909-931, May.
    6. Neubert, Karin & Brunner, Edgar, 2007. "A studentized permutation test for the non-parametric Behrens-Fisher problem," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5192-5204, June.
    7. Markus Pauly, 2011. "Discussion about the quality of F-ratio resampling tests for comparing variances," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 163-179, May.
    8. Arnold Janssen, 2005. "Resampling student'st-type statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 507-529, September.
    9. Janssen, Arnold, 1997. "Studentized permutation tests for non-i.i.d. hypotheses and the generalized Behrens-Fisher problem," Statistics & Probability Letters, Elsevier, vol. 36(1), pages 9-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young, Alwyn, 2024. "Asymptotically robust permutation-based randomization confidence intervals for parametric OLS regression," European Economic Review, Elsevier, vol. 163(C).
    2. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    3. Ditzhaus, Marc & Smaga, Łukasz, 2022. "Permutation test for the multivariate coefficient of variation in factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    4. Federico A. Bugni & Joel L. Horowitz, 2021. "Permutation tests for equality of distributions of functional data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 861-877, November.
    5. James J. Heckman & Ganesh Karapakula, 2019. "The Perry Preschoolers at Late Midlife: A Study in Design-Specific Inference," Working Papers 2019-034, Human Capital and Economic Opportunity Working Group.
    6. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.
    7. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    8. James J Heckman & Ganesh Karapakula, 2021. "Using a satisficing model of experimenter decision-making to guide finite-sample inference for compromised experiments," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 1-39.
    9. Juwon Seo, 2018. "Randomization Tests for Equality in Dependence Structure," Papers 1811.02105, arXiv.org.
    10. Chung, EunYi & Olivares, Mauricio, 2021. "Permutation test for heterogeneous treatment effects with a nuisance parameter," Journal of Econometrics, Elsevier, vol. 225(2), pages 148-174.
    11. Young, Alwyn, 2024. "Asymptotically robust permutation-based randomization confidence intervals for parametric OLS regression," LSE Research Online Documents on Economics 120933, London School of Economics and Political Science, LSE Library.
    12. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    13. Konietschke, Frank & Bathke, Arne C. & Harrar, Solomon W. & Pauly, Markus, 2015. "Parametric and nonparametric bootstrap methods for general MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 291-301.
    14. Zeng-Hua Lu, 2019. "Extended MinP Tests for Global and Multiple testing," Papers 1911.04696, arXiv.org, revised Aug 2024.
    15. Purevdorj Tuvaandorj, 2021. "Robust Permutation Tests in Linear Instrumental Variables Regression," Papers 2111.13774, arXiv.org, revised Jul 2024.
    16. Nick Koning & Paul Bekker, 2019. "Exact Testing of Many Moment Inequalities Against Multiple Violations," Papers 1904.12775, arXiv.org, revised Jun 2020.
    17. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2024. "Testing equality of several distributions in separable metric spaces: A maximum mean discrepancy based approach," Journal of Econometrics, Elsevier, vol. 239(2).
    18. David M. Ritzwoller & Joseph P. Romano & Azeem M. Shaikh, 2024. "Randomization Inference: Theory and Applications," Papers 2406.09521, arXiv.org.
    19. Peter L. Cohen & Colin B. Fogarty, 2022. "Gaussian prepivoting for finite population causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 295-320, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    2. Purevdorj Tuvaandorj, 2021. "Robust Permutation Tests in Linear Instrumental Variables Regression," Papers 2111.13774, arXiv.org, revised Jul 2024.
    3. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    4. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    5. Marc Ditzhaus & Arnold Janssen, 2020. "Bootstrap and permutation rank tests for proportional hazards under right censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 493-517, July.
    6. repec:sip:wpaper:12-026 is not listed on IDEAS
    7. Ditzhaus, Marc & Smaga, Łukasz, 2022. "Permutation test for the multivariate coefficient of variation in factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    8. Juwon Seo, 2018. "Randomization Tests for Equality in Dependence Structure," Papers 1811.02105, arXiv.org.
    9. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    10. Marinho Bertanha & Eunyi Chung, 2023. "Permutation Tests at Nonparametric Rates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2833-2846, October.
    11. Baumeister, Marléne & Ditzhaus, Marc & Pauly, Markus, 2024. "Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    12. Marc Ditzhaus & Roland Fried & Markus Pauly, 2021. "QANOVA: quantile-based permutation methods for general factorial designs," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 960-979, December.
    13. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    14. Markus Pauly & Maria Umlauft & Ali Ünlü, 2018. "Resampling-Based Inference Methods for Comparing Two Coefficients Alpha," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 203-222, March.
    15. Smaga, Łukasz, 2015. "Wald-type statistics using {2}-inverses for hypothesis testing in general factorial designs," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 215-220.
    16. Zeng-Hua Lu, 2019. "Extended MinP Tests for Global and Multiple testing," Papers 1911.04696, arXiv.org, revised Aug 2024.
    17. Cyrus J. DiCiccio & Joseph P. Romano, 2017. "Robust Permutation Tests For Correlation And Regression Coefficients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1211-1220, July.
    18. David M. Ritzwoller & Joseph P. Romano & Azeem M. Shaikh, 2024. "Randomization Inference: Theory and Applications," Papers 2406.09521, arXiv.org.
    19. Ditzhaus, Marc & Pauly, Markus, 2019. "Wild bootstrap logrank tests with broader power functions for testing superiority," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 1-11.
    20. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
    21. Nan Yang & Yong Long Lim, 2018. "Temporary Incentives Change Daily Routines: Evidence from a Field Experiment on Singapore’s Subways," Management Science, INFORMS, vol. 64(7), pages 3365-3379, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:193:y:2016:i:1:p:76-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.