IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i3d10.1007_s10463-021-00800-8.html
   My bibliography  Save this article

Wigner and Wishart ensembles for sparse Vinberg models

Author

Listed:
  • Hideto Nakashima

    (The Institute of Statistical Mathematics)

  • Piotr Graczyk

    (Université d’Angers)

Abstract

Vinberg cones and the ambient vector spaces are important in modern statistics of sparse models. The aim of this paper is to study eigenvalue distributions of Gaussian, Wigner and covariance matrices related to growing Vinberg matrices. For Gaussian or Wigner ensembles, we give an explicit formula for the limiting distribution. For Wishart ensembles defined naturally on Vinberg cones, their limiting Stieltjes transforms, support and atom at 0 are described explicitly in terms of the Lambert–Tsallis functions, which are defined by using the Tsallis q-exponential functions.

Suggested Citation

  • Hideto Nakashima & Piotr Graczyk, 2022. "Wigner and Wishart ensembles for sparse Vinberg models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 399-433, June.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:3:d:10.1007_s10463-021-00800-8
    DOI: 10.1007/s10463-021-00800-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-021-00800-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-021-00800-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. A. Andersson & G. G. Wojnar, 2004. "Wishart Distributions on Homogeneous Cones," Journal of Theoretical Probability, Springer, vol. 17(4), pages 781-818, October.
    2. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2018. "Information geometry on the curved q-exponential family with application to survival data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 788-802.
    3. Cheliotis, Dimitris, 2018. "Triangular random matrices and biorthogonal ensembles," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 36-44.
    4. Takayama, Nobuki & Jiu, Lin & Kuriki, Satoshi & Zhang, Yi, 2020. "Computation of the expected Euler characteristic for the largest eigenvalue of a real non-central Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    5. Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
    6. Fujikoshi, Yasunori & Sakurai, Tetsuro, 2016. "High-dimensional consistency of rank estimation criteria in multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 199-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oda, Ryoya & Suzuki, Yuya & Yanagihara, Hirokazu & Fujikoshi, Yasunori, 2020. "A consistent variable selection method in high-dimensional canonical discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    2. László PáL, 2022. "Asset Allocation Strategies Using Covariance Matrix Estimators," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 10(1), pages 133-144, September.
    3. Dimitar Kitanovski & Igor Mishkovski & Viktor Stojkoski & Miroslav Mirchev, 2024. "Network-based diversification of stock and cryptocurrency portfolios," Papers 2408.11739, arXiv.org.
    4. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
    5. Baskerville, Nicholas P. & Granziol, Diego & Keating, Jonathan P., 2022. "Appearance of Random Matrix Theory in deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    6. Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    7. Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2021. "Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination," Econometric Reviews, Taylor & Francis Journals, vol. 40(10), pages 905-918, November.
    8. Sebastien Valeyre, 2022. "Optimal trend following portfolios," Papers 2201.06635, arXiv.org.
    9. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    10. Gautier Marti, 2019. "CorrGAN: Sampling Realistic Financial Correlation Matrices Using Generative Adversarial Networks," Papers 1910.09504, arXiv.org, revised Dec 2019.
    11. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    12. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    13. G. L. Zitelli, 2022. "Amalgamated Free Lévy Processes as Limits of Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2176-2193, December.
    14. Jerome Garnier-Brun & Michael Benzaquen & Stefano Ciliberti & Jean-Philippe Bouchaud, 2021. "A new spin on optimal portfolios and ecological equilibria," Papers 2104.00668, arXiv.org, revised Oct 2021.
    15. Andrew Butler & Roy H. Kwon, 2021. "Data-driven integration of norm-penalized mean-variance portfolios," Papers 2112.07016, arXiv.org, revised Nov 2022.
    16. Mattia Guerini & Duc Thi Luu & Mauro Napoletano, 2023. "Synchronization patterns in the European Union," Applied Economics, Taylor & Francis Journals, vol. 55(18), pages 2038-2059, April.
    17. Ding, Xiucai & Ji, Hong Chang, 2023. "Spiked multiplicative random matrices and principal components," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 25-60.
    18. Christian Bongiorno & Damien Challet, 2023. "Covariance matrix filtering and portfolio optimisation: the Average Oracle vs Non-Linear Shrinkage and all the variants of DCC-NLS," Papers 2309.17219, arXiv.org.
    19. K. B. Gubbels & J. Y. Ypma & C. W. Oosterlee, 2023. "Principal Component Copulas for Capital Modelling," Papers 2312.13195, arXiv.org.
    20. repec:hal:spmain:info:hdl:2441/5q8fnecj1u87ka099dc571bhi2 is not listed on IDEAS
    21. Anshul Verma & Orazio Angelini & Tiziana Di Matteo, 2019. "A new set of cluster driven composite development indicators," Papers 1911.11226, arXiv.org, revised Mar 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:3:d:10.1007_s10463-021-00800-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.