IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v590y2022ics0378437121009432.html
   My bibliography  Save this article

Appearance of Random Matrix Theory in deep learning

Author

Listed:
  • Baskerville, Nicholas P.
  • Granziol, Diego
  • Keating, Jonathan P.

Abstract

We investigate the local spectral statistics of the loss surface Hessians of artificial neural networks, where we discover agreement with Gaussian Orthogonal Ensemble statistics across several network architectures and datasets. These results shed new light on the applicability of Random Matrix Theory to modelling neural networks and suggest a role for it in the study of loss surfaces in deep learning.

Suggested Citation

  • Baskerville, Nicholas P. & Granziol, Diego & Keating, Jonathan P., 2022. "Appearance of Random Matrix Theory in deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
  • Handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s0378437121009432
    DOI: 10.1016/j.physa.2021.126742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121009432
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joël Bun & Jean-Philippe Bouchaud & Marc Potters, 2017. "Cleaning large correlation matrices: tools from random matrix theory," Post-Print hal-01491304, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chinea Manrique de Lara, Alejandro, 2023. "On the theory of deep learning: A theoretical physics perspective (Part I)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Yong Zhou & Xinming Guo & Fujin Hou & Jianqing Wu, 2022. "Review of Intelligent Road Defects Detection Technology," Sustainability, MDPI, vol. 14(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. László PáL, 2022. "Asset Allocation Strategies Using Covariance Matrix Estimators," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 10(1), pages 133-144, September.
    2. Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2021. "Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination," Econometric Reviews, Taylor & Francis Journals, vol. 40(10), pages 905-918, November.
    3. Sebastien Valeyre, 2022. "Optimal trend following portfolios," Papers 2201.06635, arXiv.org.
    4. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    5. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    6. Jerome Garnier-Brun & Michael Benzaquen & Stefano Ciliberti & Jean-Philippe Bouchaud, 2021. "A new spin on optimal portfolios and ecological equilibria," Papers 2104.00668, arXiv.org, revised Oct 2021.
    7. Andrew Butler & Roy H. Kwon, 2021. "Data-driven integration of norm-penalized mean-variance portfolios," Papers 2112.07016, arXiv.org, revised Nov 2022.
    8. Mattia Guerini & Duc Thi Luu & Mauro Napoletano, 2023. "Synchronization patterns in the European Union," Applied Economics, Taylor & Francis Journals, vol. 55(18), pages 2038-2059, April.
    9. Ding, Xiucai & Ji, Hong Chang, 2023. "Spiked multiplicative random matrices and principal components," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 25-60.
    10. Christian Bongiorno & Damien Challet, 2023. "Covariance matrix filtering and portfolio optimisation: the Average Oracle vs Non-Linear Shrinkage and all the variants of DCC-NLS," Papers 2309.17219, arXiv.org.
    11. K. B. Gubbels & J. Y. Ypma & C. W. Oosterlee, 2023. "Principal Component Copulas for Capital Modelling," Papers 2312.13195, arXiv.org.
    12. Anshul Verma & Orazio Angelini & Tiziana Di Matteo, 2019. "A new set of cluster driven composite development indicators," Papers 1911.11226, arXiv.org, revised Mar 2020.
    13. Tacchella, Andrea & Zaccaria, Andrea & Miccheli, Marco & Pietronero, Luciano, 2023. "Relatedness in the era of machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    14. Nie, Chun-Xiao, 2021. "Analyzing financial correlation matrix based on the eigenvector–eigenvalue identity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    15. Jean-Philippe Bouchaud & Iacopo Mastromatteo & Marc Potters & Konstantin Tikhonov, 2022. "Excess Out-of-Sample Risk and Fleeting Modes," Papers 2205.01012, arXiv.org.
    16. Rubio-García, Álvaro & Fernández-Lorenzo, Samuel & García-Ripoll, Juan José & Porras, Diego, 2024. "Accurate solution of the Index Tracking problem with a hybrid simulated annealing algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    17. Ahmad W. Bitar & Nathan de Carvalho & Valentin Gatignol, 2023. "Covariance matrix estimation for robust portfolio allocation," Working Papers hal-04046454, HAL.
    18. Adil Rengim Cetingoz & Jean-David Fermanian & Olivier Gu'eant, 2022. "Risk Budgeting Portfolios: Existence and Computation," Papers 2211.07212, arXiv.org, revised Sep 2023.
    19. Anshul Verma & Riccardo Junior Buonocore & Tiziana di Matteo, 2017. "A cluster driven log-volatility factor model: a deepening on the source of the volatility clustering," Papers 1712.02138, arXiv.org, revised May 2018.
    20. Christian Bongiorno & Damien Challet, 2022. "Reactive global minimum variance portfolios with k-BAHC covariance cleaning," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1344-1360, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:590:y:2022:i:c:s0378437121009432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.