IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v71y2019i3d10.1007_s10463-018-0657-x.html
   My bibliography  Save this article

Testing for a $$\delta $$ δ -neighborhood of a generalized Pareto copula

Author

Listed:
  • Stefan Aulbach

    (University of Würzburg)

  • Michael Falk

    (University of Würzburg)

  • Timo Fuller

    (University of Würzburg)

Abstract

A multivariate distribution function F is in the max-domain of attraction of an extreme value distribution if and only if this is true for the copula corresponding to F and its univariate margins. Aulbach et al. (Bernoulli 18(2), 455–475, 2012. https://doi.org/10.3150/10-BEJ343 ) have shown that a copula satisfies the extreme value condition if and only if the copula is tail equivalent to a generalized Pareto copula (GPC). In this paper, we propose a $$\chi ^2$$ χ 2 -goodness-of-fit test in arbitrary dimension for testing whether a copula is in a certain neighborhood of a GPC. The test can be applied to stochastic processes as well to check whether the corresponding copula process is close to a generalized Pareto process. Since the p value of the proposed test is highly sensitive to a proper selection of a certain threshold, we also present graphical tools that make the decision, whether or not to reject the hypothesis, more comfortable.

Suggested Citation

  • Stefan Aulbach & Michael Falk & Timo Fuller, 2019. "Testing for a $$\delta $$ δ -neighborhood of a generalized Pareto copula," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 599-626, June.
  • Handle: RePEc:spr:aistmt:v:71:y:2019:i:3:d:10.1007_s10463-018-0657-x
    DOI: 10.1007/s10463-018-0657-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-018-0657-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-018-0657-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bucher, Axel & Segers, Johan & Volgushev, Stanislav, 2014. "When uniform weak convergence fails: empirical processes for dependence functions via epi- and hypographs," LIDAM Reprints ISBA 2014018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Falk, Michael & Hofmann, Martin, 2012. "Sojourn times and the fragility index," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1110-1128.
    3. Stefan Aulbach & Verena Bayer & Michael Falk, 2012. "A multivariate piecing-together approach with an application to operational loss data," Papers 1205.1617, arXiv.org.
    4. Kojadinovic, Ivan & Segers, Johan & Yan, Jun, 2011. "Large-sample tests of extreme-value dependence for multivariate copulas," LIDAM Reprints ISBA 2011025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    6. Deheuvels, Paul, 1983. "Point processes and multivariate extreme values," Journal of Multivariate Analysis, Elsevier, vol. 13(2), pages 257-272, June.
    7. Kojadinovic, Jean D. & Segers, Johan & Yan, Yun, 2011. "Large-sample tests of extreme-value dependence for multivariate copulas," LIDAM Discussion Papers ISBA 2011012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2006. "Weighted approximations of tail copula processes with applications to testing the bivariate extreme value condition," Other publications TiSEM 18b65ac3-ba79-4bff-ad53-2, Tilburg University, School of Economics and Management.
    9. Hofmann, Martin, 2013. "On the hitting probability of max-stable processes," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2516-2521.
    10. Dominik Kortschak & Hansjörg Albrecher, 2009. "Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 279-306, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Carsten Bormann & Julia Schaumburg & Melanie Schienle, 2016. "Beyond Dimension two: A Test for Higher-Order Tail Risk," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 552-580.
    3. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    4. Bucher, Axel & Kojadinovic, Ivan, 2013. "A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing," LIDAM Discussion Papers ISBA 2013029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    6. Agliardi, Elettra & Alexopoulos, Thomas & Karvelas, Kleanthis, 2023. "The environmental pillar of ESG and financial performance: A portfolio analysis," Energy Economics, Elsevier, vol. 120(C).
    7. Aulbach, Stefan & Falk, Michael & Hofmann, Martin, 2012. "The multivariate Piecing-Together approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 161-170.
    8. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Mazo, Gildas & Girard, Stéphane & Forbes, Florence, 2015. "A class of multivariate copulas based on products of bivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 363-376.
    10. Catalina Bolancé & Carlos Alberto Acuña, 2021. "A New Kernel Estimator of Copulas Based on Beta Quantile Transformations," Mathematics, MDPI, vol. 9(10), pages 1-16, May.
    11. Yeting Du & Johanna Nešlehová, 2013. "A moment-based test for extreme-value dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 673-695, July.
    12. Rohmer, Tom, 2016. "Some results on change-point detection in cross-sectional dependence of multivariate data with changes in marginal distributions," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 45-54.
    13. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    14. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    15. Weng, Chengguo & Zhang, Yi, 2012. "Characterization of multivariate heavy-tailed distribution families via copula," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 178-186.
    16. Segers, Johan, 2012. "Nonparametric inference for max-stable dependence : Discussion of "Statistical Modelling of Spatial Extremes" by A. C. Davison, S. Padoan and M. Ribatet, to appear in Statistical Science," LIDAM Discussion Papers ISBA 2012012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
    18. Kojadinovic, Ivan, 2017. "Some copula inference procedures adapted to the presence of ties," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 24-41.
    19. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2017. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2017028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:71:y:2019:i:3:d:10.1007_s10463-018-0657-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.