IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v69y2017i4d10.1007_s10463-016-0566-9.html
   My bibliography  Save this article

A unified penalized method for sparse additive quantile models: an RKHS approach

Author

Listed:
  • Shaogao Lv

    (Southwestern University of Finance and Economics)

  • Xin He

    (City University of Hong Kong)

  • Junhui Wang

    (City University of Hong Kong)

Abstract

This paper focuses on the high-dimensional additive quantile model, allowing for both dimension and sparsity to increase with sample size. We propose a new sparsity-smoothness penalty over a reproducing kernel Hilbert space (RKHS), which includes linear function and spline-based nonlinear function as special cases. The combination of sparsity and smoothness is crucial for the asymptotic theory as well as the computational efficiency. Oracle inequalities on excess risk of the proposed method are established under weaker conditions than most existing results. Furthermore, we develop a majorize-minimization forward splitting iterative algorithm (MMFIA) for efficient computation and investigate its numerical convergence properties. Numerical experiments are conducted on the simulated and real data examples, which support the effectiveness of the proposed method.

Suggested Citation

  • Shaogao Lv & Xin He & Junhui Wang, 2017. "A unified penalized method for sparse additive quantile models: an RKHS approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 897-923, August.
  • Handle: RePEc:spr:aistmt:v:69:y:2017:i:4:d:10.1007_s10463-016-0566-9
    DOI: 10.1007/s10463-016-0566-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-016-0566-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-016-0566-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heng Lian, 2012. "Semiparametric Estimation of Additive Quantile Regression Models by Two-Fold Penalty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 337-350, March.
    2. Yishay Yafeh & Oved Yosha, 2003. "Large Shareholders and Banks: Who Monitors and How?," Economic Journal, Royal Economic Society, vol. 113(484), pages 128-146, January.
    3. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    4. Yuan, Ming, 2006. "GACV for quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 813-829, February.
    5. Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    9. Pearce, N.D. & Wand, M.P., 2006. "Penalized Splines and Reproducing Kernel Methods," The American Statistician, American Statistical Association, vol. 60, pages 233-240, August.
    10. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    2. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    3. Fan, Zengyan & Lian, Heng, 2018. "Quantile regression for additive coefficient models in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 54-64.
    4. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    5. Honda, Toshio & 本田, 敏雄 & Lin, Chien-Tong, 2022. "Forward variable selection for ultra-high dimensional quantile regression models," Discussion Papers 2021-02, Graduate School of Economics, Hitotsubashi University.
    6. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    7. Jooyong Shim & Changha Hwang & Kyungha Seok, 2014. "Composite support vector quantile regression estimation," Computational Statistics, Springer, vol. 29(6), pages 1651-1665, December.
    8. Chen, Le-Yu & Lee, Sokbae, 2023. "Sparse quantile regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
    9. Park, Jinho, 2017. "Solution path for quantile regression with epsilon-insensitive loss in a reproducing kernel Hilbert space," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 205-211.
    10. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    11. Jooyong Shim & Yongtae Kim & Jangtaek Lee & Changha Hwang, 2012. "Estimating value at risk with semiparametric support vector quantile regression," Computational Statistics, Springer, vol. 27(4), pages 685-700, December.
    12. Park, Jinho & Kim, Jeankyung, 2011. "Quantile regression with an epsilon-insensitive loss in a reproducing kernel Hilbert space," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 62-70, January.
    13. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
    14. Jiawei Hou & Yunquan Song, 2022. "Interquantile shrinkage in spatial additive autoregressive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1030-1057, December.
    15. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
    16. Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
    17. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
    18. Wang, Shangshan & Xiang, Liming, 2017. "Two-layer EM algorithm for ALD mixture regression models: A new solution to composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 136-154.
    19. Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
    20. Guangrui Tang & Neng Fan, 2022. "A Survey of Solution Path Algorithms for Regression and Classification Models," Annals of Data Science, Springer, vol. 9(4), pages 749-789, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:69:y:2017:i:4:d:10.1007_s10463-016-0566-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.