IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v30y2012i3p337-350.html
   My bibliography  Save this article

Semiparametric Estimation of Additive Quantile Regression Models by Two-Fold Penalty

Author

Listed:
  • Heng Lian

Abstract

In this article, we propose a model selection and semiparametric estimation method for additive models in the context of quantile regression problems. In particular, we are interested in finding nonzero components as well as linear components in the conditional quantile function. Our approach is based on spline approximation for the components aided by two Smoothly Clipped Absolute Deviation (SCAD) penalty terms. The advantage of our approach is that one can automatically choose between general additive models, partially linear additive models, and linear models in a single estimation step. The most important contribution is that this is achieved without the need for specifying which covariates enter the linear part, solving one serious practical issue for models with partially linear additive structure. Simulation studies as well as a real dataset are used to illustrate our method.

Suggested Citation

  • Heng Lian, 2012. "Semiparametric Estimation of Additive Quantile Regression Models by Two-Fold Penalty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 337-350, March.
  • Handle: RePEc:taf:jnlbes:v:30:y:2012:i:3:p:337-350
    DOI: 10.1080/07350015.2012.693851
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2012.693851
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2012.693851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weihua Zhao & Jianbo Li & Heng Lian, 2018. "Adaptive varying-coefficient linear quantile model: a profiled estimating equations approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 553-582, June.
    2. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    3. Cui, Xia & Zhao, Weihua & Lian, Heng & Liang, Hua, 2019. "Pursuit of dynamic structure in quantile additive models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 42-60.
    4. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    5. HONDA, Toshio & 本田, 敏雄 & ING, Ching-Kang & WU, Wei-Ying, 2017. "Adaptively weighted group Lasso for semiparametric quantile regression models," Discussion Papers 2017-04, Graduate School of Economics, Hitotsubashi University.
    6. Xu, Qifa & Niu, Xufeng & Jiang, Cuixia & Huang, Xue, 2015. "The Phillips curve in the US: A nonlinear quantile regression approach," Economic Modelling, Elsevier, vol. 49(C), pages 186-197.
    7. Shaogao Lv & Xin He & Junhui Wang, 2017. "A unified penalized method for sparse additive quantile models: an RKHS approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 897-923, August.
    8. Yang, Jing & Yang, Hu, 2016. "A robust penalized estimation for identification in semiparametric additive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 268-277.
    9. Jiawei Hou & Yunquan Song, 2022. "Interquantile shrinkage in spatial additive autoregressive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1030-1057, December.
    10. Fang Lu & Jing Yang & Xuewen Lu, 2022. "One-step oracle procedure for semi-parametric spatial autoregressive model and its empirical application to Boston housing price data," Empirical Economics, Springer, vol. 62(6), pages 2645-2671, June.
    11. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2012:i:3:p:337-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.