IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v60y2008i4p865-882.html
   My bibliography  Save this article

On potentially negative space time covariances obtained as sum of products of marginal ones

Author

Listed:
  • P. Gregori
  • E. Porcu
  • J. Mateu
  • Z. Sasvári

Abstract

No abstract is available for this item.

Suggested Citation

  • P. Gregori & E. Porcu & J. Mateu & Z. Sasvári, 2008. "On potentially negative space time covariances obtained as sum of products of marginal ones," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 865-882, December.
  • Handle: RePEc:spr:aistmt:v:60:y:2008:i:4:p:865-882
    DOI: 10.1007/s10463-007-0122-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-007-0122-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-007-0122-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iaco, S. De & Myers, D. E. & Posa, D., 2001. "Space-time analysis using a general product-sum model," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 21-28, March.
    2. Gneiting T., 2002. "Nonseparable, Stationary Covariance Functions for Space-Time Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 590-600, June.
    3. Cesare, L. De & Myers, D. E. & Posa, D., 2001. "Estimating and modeling space-time correlation structures," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 9-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández-Avilés, G & Montero, JM & Mateu, J, 2011. "Mathematical Genesis of the Spatio-Temporal Covariance Functions," MPRA Paper 35874, University Library of Munich, Germany.
    2. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    3. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 133-150, April.
    4. Guella, Jean Carlo & Menegatto, Valdir Antonio & Porcu, Emilio, 2018. "Strictly positive definite multivariate covariance functions on spheres," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 150-159.
    5. Ip, Ryan H.L. & Li, W.K., 2017. "A class of valid Matérn cross-covariance functions for multivariate spatio-temporal random fields," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 115-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra De Iaco, 2010. "Space-time correlation analysis: a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 1027-1041.
    2. Bardia Bayat & Mohsen Nasseri & Banafsheh Zahraie, 2015. "Identification of long-term annual pattern of meteorological drought based on spatiotemporal methods: evaluation of different geostatistical approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 515-541, March.
    3. Alexandre Rodrigues & Peter J. Diggle, 2010. "A Class of Convolution‐Based Models for Spatio‐Temporal Processes with Non‐Separable Covariance Structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 553-567, December.
    4. José-María Montero & Gema Fernández-Avilés & Tiziana Laureti, 2021. "A Local Spatial STIRPAT Model for Outdoor NO x Concentrations in the Community of Madrid, Spain," Mathematics, MDPI, vol. 9(6), pages 1-33, March.
    5. De Iaco, S., 2023. "Spatio-temporal generalized complex covariance models based on convolution," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    6. Firoozeh Rivaz & Mohsen Mohammadzadeh & Majid Jafari Khaledi, 2011. "Spatio-temporal modeling and prediction of CO concentrations in Tehran city," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1995-2007, November.
    7. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 133-150, April.
    8. Sandra De Iaco, 2011. "A new space--time multivariate approach for environmental data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2471-2483, January.
    9. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. Yasumasa Matsuda, 2014. "Wavelet Analysis Of Spatio-Temporal Data," TERG Discussion Papers 311, Graduate School of Economics and Management, Tohoku University.
    11. Montero, José-María, 2018. "Geostatistics: Unde venis et quo vadis? /Geoestadística:¿De dónde vienes y a dónde vas?," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 81-106, Enero.
    12. Alessia Caponera, 2021. "SPHARMA approximations for stationary functional time series on the sphere," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 609-634, October.
    13. Lim, S.C. & Teo, L.P., 2009. "Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1325-1356, April.
    14. Liu, Jinfu & Ren, Guorui & Wan, Jie & Guo, Yufeng & Yu, Daren, 2016. "Variogram time-series analysis of wind speed," Renewable Energy, Elsevier, vol. 99(C), pages 483-491.
    15. Yuta Kanno & Takayuki Shiohama, 2022. "Land price polarization and dispersion in Tokyo: a spatial model approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(2), pages 807-835, June.
    16. Raquel Menezes & Helena Piairo & Pilar García-Soidán & Inês Sousa, 2016. "Spatial–temporal modellization of the $$\hbox {NO}_{2}$$ NO 2 concentration data through geostatistical tools," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 107-124, March.
    17. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    18. Raquel Menezes & Helena Piairo & Pilar García-Soidán & Inês Sousa, 2016. "Spatial–temporal modellization of the $$\hbox {NO}_{2}$$ NO 2 concentration data through geostatistical tools," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 107-124, March.
    19. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    20. Steele, Fiona & Clarke, Paul & Kuha, Jouni, 2019. "Modeling within-household associations in household panel studies," LSE Research Online Documents on Economics 88162, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:60:y:2008:i:4:p:865-882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.