IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v51y2001i1p9-14.html
   My bibliography  Save this article

Estimating and modeling space-time correlation structures

Author

Listed:
  • Cesare, L. De
  • Myers, D. E.
  • Posa, D.

Abstract

In this paper, a class of product-sum covariance models has been introduced for estimating and modeling space-time correlation structures. It is shown how the coefficients of this class of models are related to the global sill and "partial" spatial and temporal sills; moreover, some constraints on these sills have been given in order to assure positive definiteness of the product-sum covariance model. A brief comparative study with some other classes of spatial-temporal covariance models has been pointed out.

Suggested Citation

  • Cesare, L. De & Myers, D. E. & Posa, D., 2001. "Estimating and modeling space-time correlation structures," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 9-14, January.
  • Handle: RePEc:eee:stapro:v:51:y:2001:i:1:p:9-14
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00131-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Posa, D., 1993. "A simple description of spatial-temporal processes," Computational Statistics & Data Analysis, Elsevier, vol. 15(4), pages 425-437, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raquel Menezes & Helena Piairo & Pilar García-Soidán & Inês Sousa, 2016. "Spatial–temporal modellization of the $$\hbox {NO}_{2}$$ NO 2 concentration data through geostatistical tools," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 107-124, March.
    2. Raquel Menezes & Helena Piairo & Pilar García-Soidán & Inês Sousa, 2016. "Spatial–temporal modellization of the $$\hbox {NO}_{2}$$ NO 2 concentration data through geostatistical tools," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 107-124, March.
    3. Ma, Chunsheng, 2003. "Nonstationary covariance functions that model space-time interactions," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 411-419, February.
    4. Sandra De Iaco, 2010. "Space-time correlation analysis: a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 1027-1041.
    5. Alexandre Rodrigues & Peter J. Diggle, 2010. "A Class of Convolution‐Based Models for Spatio‐Temporal Processes with Non‐Separable Covariance Structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 553-567, December.
    6. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. P. Gregori & E. Porcu & J. Mateu & Z. Sasvári, 2008. "On potentially negative space time covariances obtained as sum of products of marginal ones," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 865-882, December.
    8. Firoozeh Rivaz & Mohsen Mohammadzadeh & Majid Jafari Khaledi, 2011. "Spatio-temporal modeling and prediction of CO concentrations in Tehran city," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1995-2007, November.
    9. Bardia Bayat & Mohsen Nasseri & Banafsheh Zahraie, 2015. "Identification of long-term annual pattern of meteorological drought based on spatiotemporal methods: evaluation of different geostatistical approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 515-541, March.
    10. Iaco, S. De & Myers, D. E. & Posa, D., 2001. "Space-time analysis using a general product-sum model," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 21-28, March.
    11. Rui Jiang & Chunxue Liu & Xiaowei Liu & Shuai Zhang, 2022. "Space–Time Effect of Green Total Factor Productivity in Mineral Resources Industry in China: Based on Space–Time Semivariogram and SPVAR Model," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    12. Bruno Scarpa, 2005. "Non parametric space-time modeling of SO2 in presence of many missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(1), pages 67-82, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monica Palma & Claudia Cappello & Sandra De Iaco & Daniela Pellegrino, 2019. "The residential real estate market in Italy: a spatio-temporal analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2451-2472, September.
    2. Santos-Fernandez, Edgar & Ver Hoef, Jay M. & Peterson, Erin E. & McGree, James & Isaak, Daniel J. & Mengersen, Kerrie, 2022. "Bayesian spatio-temporal models for stream networks," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:51:y:2001:i:1:p:9-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.