IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v3y2009i2p135-167.html
   My bibliography  Save this article

Trimming algorithms for clustering contaminated grouped data and their robustness

Author

Listed:
  • María Gallegos
  • Gunter Ritter

Abstract

No abstract is available for this item.

Suggested Citation

  • María Gallegos & Gunter Ritter, 2009. "Trimming algorithms for clustering contaminated grouped data and their robustness," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(2), pages 135-167, September.
  • Handle: RePEc:spr:advdac:v:3:y:2009:i:2:p:135-167
    DOI: 10.1007/s11634-009-0044-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-009-0044-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-009-0044-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    2. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    3. Hanfeng Chen & Jiahua Chen & John D. Kalbfleisch, 2004. "Testing for a finite mixture model with two components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 95-115, February.
    4. H. Bock, 1985. "On some significance tests in cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 77-108, December.
    5. Bock H.H., 1985. "On some significance tests in cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 300-300, December.
    6. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gallegos, María Teresa & Ritter, Gunter, 2013. "Strong consistency of k-parameters clustering," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 14-31.
    2. María Teresa Gallegos & Gunter Ritter, 2018. "Probabilistic clustering via Pareto solutions and significance tests," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 179-202, June.
    3. Šárka Brodinová & Peter Filzmoser & Thomas Ortner & Christian Breiteneder & Maia Rohm, 2019. "Robust and sparse k-means clustering for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 905-932, December.
    4. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    5. Gallegos, María Teresa & Ritter, Gunter, 2010. "Using combinatorial optimization in model-based trimmed clustering with cardinality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 637-654, March.
    6. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    7. Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2013. "A fast algorithm for robust constrained clustering," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 124-136.
    8. C. Ruwet & L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2012. "The influence function of the TCLUST robust clustering procedure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 107-130, July.
    9. Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2012. "tclust: An R Package for a Trimming Approach to Cluster Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i12).
    10. Pavel S. Stashevsky & Irina N. Yakovina & Tania M. Alarcon Falconi & Elena N. Naumova, 2019. "Agglomerative Clustering of Enteric Infections and Weather Parameters to Identify Seasonal Outbreaks in Cold Climates," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    11. Amandine Schmutz & Julien Jacques & Charles Bouveyron & Laurence Chèze & Pauline Martin, 2020. "Clustering multivariate functional data in group-specific functional subspaces," Computational Statistics, Springer, vol. 35(3), pages 1101-1131, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallegos, María Teresa & Ritter, Gunter, 2010. "Using combinatorial optimization in model-based trimmed clustering with cardinality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 637-654, March.
    2. Andrea Cappozzo & Luis Angel García Escudero & Francesca Greselin & Agustín Mayo-Iscar, 2021. "Parameter Choice, Stability and Validity for Robust Cluster Weighted Modeling," Stats, MDPI, vol. 4(3), pages 1-14, July.
    3. Pacáková, Z. & Poláčková, J., 2013. "Hierarchical Cluster Analysis – Various Approaches to Data Preparation," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 5(3), pages 1-11, September.
    4. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    5. Jacques-Antoine Gauthier & Eric D. Widmer & Philipp Bucher & Cédric Notredame, 2009. "How Much Does It Cost?," Sociological Methods & Research, , vol. 38(1), pages 197-231, August.
    6. Cyril Atkinson-Clement & Eléonore Pigalle, 2021. "What can we learn from Covid-19 pandemic’s impact on human behaviour? The case of France’s lockdown," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    7. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    8. Öttl, Gerald & Böck, Philipp & Werpup, Nadja & Schwarze, Malte, 2013. "Derivation of representative air traffic peaks as standard input for airport related simulation," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 31-39.
    9. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    10. Henner Gimpel & Daniel Rau & Maximilian Röglinger, 2018. "Understanding FinTech start-ups – a taxonomy of consumer-oriented service offerings," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(3), pages 245-264, August.
    11. Peña-Malavera Andrea & Bruno Cecilia & Fernandez Elmer & Balzarini Monica, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 391-402, August.
    12. Kojadinovic, Ivan, 2010. "Hierarchical clustering of continuous variables based on the empirical copula process and permutation linkages," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 90-108, January.
    13. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    14. Véronique Cariou & Stéphane Verdun & Emmanuelle Diaz & El Qannari & Evelyne Vigneau, 2009. "Comparison of three hypothesis testing approaches for the selection of the appropriate number of clusters of variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 227-241, December.
    15. Yi Peng & Yong Zhang & Gang Kou & Yong Shi, 2012. "A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    16. Rosephine G. Rakotonirainy & Jan H. Vuuren, 2021. "The effect of benchmark data characteristics during empirical strip packing heuristic performance evaluation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 467-495, June.
    17. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    18. Z. Volkovich & Z. Barzily & G.-W. Weber & D. Toledano-Kitai & R. Avros, 2012. "An application of the minimal spanning tree approach to the cluster stability problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 119-139, March.
    19. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    20. Tan, Kean Ming & Witten, Daniela & Shojaie, Ali, 2015. "The cluster graphical lasso for improved estimation of Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 23-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:3:y:2009:i:2:p:135-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.