IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i3p637-654.html
   My bibliography  Save this article

Using combinatorial optimization in model-based trimmed clustering with cardinality constraints

Author

Listed:
  • Gallegos, María Teresa
  • Ritter, Gunter

Abstract

Statistical clustering criteria with free scale parameters and unknown cluster sizes are inclined to create small, spurious clusters. To mitigate this tendency a statistical model for cardinality-constrained clustering of data with gross outliers is established, its maximum likelihood and maximum a posteriori clustering criteria are derived, and their consistency and robustness are analyzed. The criteria lead to constrained optimization problems that can be solved by using iterative, alternating trimming algorithms of k-means type. Each step in the algorithms requires the solution of a [lambda]-assignment problem known from combinatorial optimization. The method allows one to estimate the numbers of clusters and outliers. It is illustrated with a synthetic data set and a real one.

Suggested Citation

  • Gallegos, María Teresa & Ritter, Gunter, 2010. "Using combinatorial optimization in model-based trimmed clustering with cardinality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 637-654, March.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:3:p:637-654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00311-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanfeng Chen & Jiahua Chen & John D. Kalbfleisch, 2004. "Testing for a finite mixture model with two components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 95-115, February.
    2. Baibing Li, 2006. "A new approach to cluster analysis: the clustering‐function‐based method," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 457-476, June.
    3. H. Bock, 1985. "On some significance tests in cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 77-108, December.
    4. Ming S. Hung & Walter O. Rom, 1980. "Solving the Assignment Problem by Relaxation," Operations Research, INFORMS, vol. 28(4), pages 969-982, August.
    5. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    6. Bock H.H., 1985. "On some significance tests in cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 300-300, December.
    7. María Gallegos & Gunter Ritter, 2009. "Trimming algorithms for clustering contaminated grouped data and their robustness," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(2), pages 135-167, September.
    8. Woodruff, David L. & Reiners, Torsten, 2004. "Experiments with, and on, algorithms for maximum likelihood clustering," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 237-253, September.
    9. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    10. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    11. Coleman, Dan & Dong, Xioapeng & Hardin, Johanna & Rocke, David M. & Woodruff, David L., 1999. "Some computational issues in cluster analysis with no a priori metric," Computational Statistics & Data Analysis, Elsevier, vol. 31(1), pages 1-11, July.
    12. Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
    13. Andrew V. Goldberg & Robert E. Tarjan, 1990. "Finding Minimum-Cost Circulations by Successive Approximation," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 430-466, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neykov, N.M. & Filzmoser, P. & Neytchev, P.N., 2012. "Robust joint modeling of mean and dispersion through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 34-48, January.
    2. Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2012. "tclust: An R Package for a Trimming Approach to Cluster Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i12).
    3. Gallegos, María Teresa & Ritter, Gunter, 2013. "Strong consistency of k-parameters clustering," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 14-31.
    4. María Teresa Gallegos & Gunter Ritter, 2018. "Probabilistic clustering via Pareto solutions and significance tests," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 179-202, June.
    5. Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2013. "A fast algorithm for robust constrained clustering," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 124-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Gallegos & Gunter Ritter, 2009. "Trimming algorithms for clustering contaminated grouped data and their robustness," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(2), pages 135-167, September.
    2. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    3. Henner Gimpel & Daniel Rau & Maximilian Röglinger, 2018. "Understanding FinTech start-ups – a taxonomy of consumer-oriented service offerings," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(3), pages 245-264, August.
    4. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    5. María Teresa Gallegos & Gunter Ritter, 2018. "Probabilistic clustering via Pareto solutions and significance tests," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 179-202, June.
    6. Šárka Brodinová & Peter Filzmoser & Thomas Ortner & Christian Breiteneder & Maia Rohm, 2019. "Robust and sparse k-means clustering for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 905-932, December.
    7. Andrea Cappozzo & Luis Angel García Escudero & Francesca Greselin & Agustín Mayo-Iscar, 2021. "Parameter Choice, Stability and Validity for Robust Cluster Weighted Modeling," Stats, MDPI, vol. 4(3), pages 1-14, July.
    8. Pacáková, Z. & Poláčková, J., 2013. "Hierarchical Cluster Analysis – Various Approaches to Data Preparation," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 5(3), pages 1-11, September.
    9. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    10. Jacques-Antoine Gauthier & Eric D. Widmer & Philipp Bucher & Cédric Notredame, 2009. "How Much Does It Cost?," Sociological Methods & Research, , vol. 38(1), pages 197-231, August.
    11. Cyril Atkinson-Clement & Eléonore Pigalle, 2021. "What can we learn from Covid-19 pandemic’s impact on human behaviour? The case of France’s lockdown," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    12. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    13. Öttl, Gerald & Böck, Philipp & Werpup, Nadja & Schwarze, Malte, 2013. "Derivation of representative air traffic peaks as standard input for airport related simulation," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 31-39.
    14. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    15. De la Cruz-Mesia, Rolando & Quintana, Fernando A. & Marshall, Guillermo, 2008. "Model-based clustering for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1441-1457, January.
    16. Peña-Malavera Andrea & Bruno Cecilia & Fernandez Elmer & Balzarini Monica, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 391-402, August.
    17. Kojadinovic, Ivan, 2010. "Hierarchical clustering of continuous variables based on the empirical copula process and permutation linkages," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 90-108, January.
    18. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    19. Véronique Cariou & Stéphane Verdun & Emmanuelle Diaz & El Qannari & Evelyne Vigneau, 2009. "Comparison of three hypothesis testing approaches for the selection of the appropriate number of clusters of variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 227-241, December.
    20. Yi Peng & Yong Zhang & Gang Kou & Yong Shi, 2012. "A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:3:p:637-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.