IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i2p352-375.html
   My bibliography  Save this article

Outcome‐guided sparse K‐means for disease subtype discovery via integrating phenotypic data with high‐dimensional transcriptomic data

Author

Listed:
  • Lingsong Meng
  • Dorina Avram
  • George Tseng
  • Zhiguang Huo

Abstract

The discovery of disease subtypes is an essential step for developing precision medicine, and disease subtyping via omics data has become a popular approach. While promising, subtypes obtained from existing approaches are not necessarily associated with clinical outcomes. With the rich clinical data along with the omics data in modern epidemiology cohorts, it is urgent to develop an outcome‐guided clustering algorithm to fully integrate the phenotypic data with the high‐dimensional omics data. Hence, we extended a sparse K‐means method to an outcome‐guided sparse K‐means (GuidedSparseKmeans) method. An unified objective function was proposed, which was comprised of (i) weighted K‐means to perform sample clusterings; (ii) lasso regularizations to perform gene selection from the high‐dimensional omics data; and (iii) incorporation of a phenotypic variable from the clinical dataset to facilitate biologically meaningful clustering results. By iteratively optimizing the objective function, we will simultaneously obtain a phenotype‐related sample clustering results and gene selection results. We demonstrated the superior performance of the GuidedSparseKmeans by comparing with existing clustering methods in simulations and applications of high‐dimensional transcriptomic data of breast cancer and Alzheimer's disease. Our algorithm has been implemented into an R package, which is publicly available on GitHub ( https://github.com/LingsongMeng/GuidedSparseKmeans).

Suggested Citation

  • Lingsong Meng & Dorina Avram & George Tseng & Zhiguang Huo, 2022. "Outcome‐guided sparse K‐means for disease subtype discovery via integrating phenotypic data with high‐dimensional transcriptomic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 352-375, March.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:2:p:352-375
    DOI: 10.1111/rssc.12536
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12536
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christina Curtis & Sohrab P. Shah & Suet-Feung Chin & Gulisa Turashvili & Oscar M. Rueda & Mark J. Dunning & Doug Speed & Andy G. Lynch & Shamith Samarajiwa & Yinyin Yuan & Stefan Gräf & Gavin Ha & Gh, 2012. "The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups," Nature, Nature, vol. 486(7403), pages 346-352, June.
    2. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    3. Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
    4. Laura J. van 't Veer & Hongyue Dai & Marc J. van de Vijver & Yudong D. He & Augustinus A. M. Hart & Mao Mao & Hans L. Peterse & Karin van der Kooy & Matthew J. Marton & Anke T. Witteveen & George J. S, 2002. "Gene expression profiling predicts clinical outcome of breast cancer," Nature, Nature, vol. 415(6871), pages 530-536, January.
    5. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    6. Charles M. Perou & Therese Sørlie & Michael B. Eisen & Matt van de Rijn & Stefanie S. Jeffrey & Christian A. Rees & Jonathan R. Pollack & Douglas T. Ross & Hilde Johnsen & Lars A. Akslen & Øystein Flu, 2000. "Molecular portraits of human breast tumours," Nature, Nature, vol. 406(6797), pages 747-752, August.
    7. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    8. Gaynor, Sheila & Bair, Eric, 2017. "Identification of relevant subtypes via preweighted sparse clustering," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 139-154.
    9. Nathan Cunningham & Jim E. Griffin & David L. Wild, 2020. "ParticleMDI: particle Monte Carlo methods for the cluster analysis of multiple datasets with applications to cancer subtype identification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 463-484, June.
    10. Tjur, Tue, 2009. "Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination," The American Statistician, American Statistical Association, vol. 63(4), pages 366-372.
    11. Daniel McFadden, 1977. "Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Recent Developments," Cowles Foundation Discussion Papers 474, Cowles Foundation for Research in Economics, Yale University.
    12. Witten, Daniela M. & Tibshirani, Robert, 2010. "A Framework for Feature Selection in Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 713-726.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    2. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    3. Zhiguang Huo & Ying Ding & Silvia Liu & Steffi Oesterreich & George Tseng, 2016. "Meta-Analytic Framework for Sparse K -Means to Identify Disease Subtypes in Multiple Transcriptomic Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 27-42, March.
    4. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    5. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    6. Gaynor, Sheila & Bair, Eric, 2017. "Identification of relevant subtypes via preweighted sparse clustering," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 139-154.
    7. Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.
    8. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    9. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    10. Peter Radchenko & Gourab Mukherjee, 2017. "Convex clustering via l 1 fusion penalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1527-1546, November.
    11. Yi Peng & Yong Zhang & Gang Kou & Yong Shi, 2012. "A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    12. Z. Volkovich & Z. Barzily & G.-W. Weber & D. Toledano-Kitai & R. Avros, 2012. "An application of the minimal spanning tree approach to the cluster stability problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 119-139, March.
    13. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    14. Fischer, Aurélie, 2011. "On the number of groups in clustering," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1771-1781.
    15. Koltcov, Sergei, 2018. "Application of Rényi and Tsallis entropies to topic modeling optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1192-1204.
    16. Dario Bruzzese & Domenico Vistocco, 2015. "DESPOTA: DEndrogram Slicing through a PemutatiOn Test Approach," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 285-304, July.
    17. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    18. Z. Volkovich & D. Toledano-Kitai & G.-W. Weber, 2013. "Self-learning K-means clustering: a global optimization approach," Journal of Global Optimization, Springer, vol. 56(2), pages 219-232, June.
    19. J. Fernando Vera & Rodrigo Macías, 2017. "Variance-Based Cluster Selection Criteria in a K-Means Framework for One-Mode Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 275-294, June.
    20. Šárka Brodinová & Peter Filzmoser & Thomas Ortner & Christian Breiteneder & Maia Rohm, 2019. "Robust and sparse k-means clustering for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 905-932, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:2:p:352-375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.