IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v17y2023i1d10.1007_s11634-022-00496-5.html
   My bibliography  Save this article

Over-optimistic evaluation and reporting of novel cluster algorithms: an illustrative study

Author

Listed:
  • Theresa Ullmann

    (LMU Munich)

  • Anna Beer

    (LMU Munich)

  • Maximilian Hünemörder

    (CAU Kiel)

  • Thomas Seidl

    (LMU Munich)

  • Anne-Laure Boulesteix

    (LMU Munich)

Abstract

When researchers publish new cluster algorithms, they usually demonstrate the strengths of their novel approaches by comparing the algorithms’ performance with existing competitors. However, such studies are likely to be optimistically biased towards the new algorithms, as the authors have a vested interest in presenting their method as favorably as possible in order to increase their chances of getting published. Therefore, the superior performance of newly introduced cluster algorithms is over-optimistic and might not be confirmed in independent benchmark studies performed by neutral and unbiased authors. This problem is known among many researchers, but so far, the different mechanisms leading to over-optimism in cluster algorithm evaluation have never been systematically studied and discussed. Researchers are thus often not aware of the full extent of the problem. We present an illustrative study to illuminate the mechanisms by which authors—consciously or unconsciously—paint their cluster algorithm’s performance in an over-optimistic light. Using the recently published cluster algorithm Rock as an example, we demonstrate how optimization of the used datasets or data characteristics, of the algorithm’s parameters and of the choice of the competing cluster algorithms leads to Rock’s performance appearing better than it actually is. Our study is thus a cautionary tale that illustrates how easy it can be for researchers to claim apparent “superiority” of a new cluster algorithm. This illuminates the vital importance of strategies for avoiding the problems of over-optimism (such as, e.g., neutral benchmark studies), which we also discuss in the article.

Suggested Citation

  • Theresa Ullmann & Anna Beer & Maximilian Hünemörder & Thomas Seidl & Anne-Laure Boulesteix, 2023. "Over-optimistic evaluation and reporting of novel cluster algorithms: an illustrative study," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 211-238, March.
  • Handle: RePEc:spr:advdac:v:17:y:2023:i:1:d:10.1007_s11634-022-00496-5
    DOI: 10.1007/s11634-022-00496-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-022-00496-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-022-00496-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Regina Nuzzo, 2015. "How scientists fool themselves – and how they can stop," Nature, Nature, vol. 526(7572), pages 182-185, October.
    3. Anne-Laure Boulesteix, 2015. "Ten Simple Rules for Reducing Overoptimistic Reporting in Methodological Computational Research," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-6, April.
    4. Anne-Laure Boulesteix & Sabine Lauer & Manuel J A Eugster, 2013. "A Plea for Neutral Comparison Studies in Computational Sciences," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-11, April.
    5. Buchka, Stefan & Hapfelmeier, Alexander & Gardner, Paul P & Wilson, Rory & Boulesteix, Anne-Laure, 2021. "On the optimistic performance evaluation of newly introduced bioinformatic methods," MetaArXiv pkqdx, Center for Open Science.
    6. Ahmed N. Albatineh & Magdalena Niewiadomska-Bugaj & Daniel Mihalko, 2006. "On Similarity Indices and Correction for Chance Agreement," Journal of Classification, Springer;The Classification Society, vol. 23(2), pages 301-313, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Hennig, 2022. "An empirical comparison and characterisation of nine popular clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 201-229, March.
    2. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    3. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    4. Martina Sundqvist & Julien Chiquet & Guillem Rigaill, 2023. "Adjusting the adjusted Rand Index," Computational Statistics, Springer, vol. 38(1), pages 327-347, March.
    5. José E. Chacón & Ana I. Rastrojo, 2023. "Minimum adjusted Rand index for two clusterings of a given size," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 125-133, March.
    6. Antonio D’Ambrosio & Sonia Amodio & Carmela Iorio & Giuseppe Pandolfo & Roberta Siciliano, 2021. "Adjusted Concordance Index: an Extensionl of the Adjusted Rand Index to Fuzzy Partitions," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 112-128, April.
    7. Matthijs Warrens, 2008. "On Similarity Coefficients for 2×2 Tables and Correction for Chance," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 487-502, September.
    8. Valerie Robert & Yann Vasseur & Vincent Brault, 2021. "Comparing High-Dimensional Partitions with the Co-clustering Adjusted Rand Index," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 158-186, April.
    9. Johann Kraus & Christoph Müssel & Günther Palm & Hans Kestler, 2011. "Multi-objective selection for collecting cluster alternatives," Computational Statistics, Springer, vol. 26(2), pages 341-353, June.
    10. Efthymios Costa & Ioanna Papatsouma & Angelos Markos, 2023. "Benchmarking distance-based partitioning methods for mixed-type data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 701-724, September.
    11. Isabella Morlini & Sergio Zani, 2012. "Dissimilarity and similarity measures for comparing dendrograms and their applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 85-105, July.
    12. Ahmed Albatineh & Magdalena Niewiadomska-Bugaj, 2011. "Correcting Jaccard and other similarity indices for chance agreement in cluster analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(3), pages 179-200, October.
    13. Matthijs J. Warrens & Hanneke Hoef, 2022. "Understanding the Adjusted Rand Index and Other Partition Comparison Indices Based on Counting Object Pairs," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 487-509, November.
    14. Jeffrey L. Andrews & Ryan Browne & Chelsey D. Hvingelby, 2022. "On Assessments of Agreement Between Fuzzy Partitions," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 326-342, July.
    15. Ekaterina Kovaleva & Boris Mirkin, 2015. "Bisecting K-Means and 1D Projection Divisive Clustering: A Unified Framework and Experimental Comparison," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 414-442, October.
    16. Jonathon J. O’Brien & Michael T. Lawson & Devin K. Schweppe & Bahjat F. Qaqish, 2020. "Suboptimal Comparison of Partitions," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 435-461, July.
    17. Andrzej Młodak, 2021. "k-Means, Ward and Probabilistic Distance-Based Clustering Methods with Contiguity Constraint," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 313-352, July.
    18. Isabella Morlini & Sergio Zani, 2012. "A New Class of Weighted Similarity Indices Using Polytomous Variables," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 199-226, July.
    19. Alicja Grześkowiak, 2016. "Assessment of Participation in Cultural Activities in Poland by Selected Multivariate Methods," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 3, January -.
    20. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:17:y:2023:i:1:d:10.1007_s11634-022-00496-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.