Benchmarking distance-based partitioning methods for mixed-type data
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-022-00521-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vichi, Maurizio & Kiers, Henk A. L., 2001. "Factorial k-means analysis for two-way data," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 49-64, July.
- Anne-Laure Boulesteix & Sabine Lauer & Manuel J A Eugster, 2013. "A Plea for Neutral Comparison Studies in Computational Sciences," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-11, April.
- M. Velden & A. Iodice D’Enza & F. Palumbo, 2017. "Cluster Correspondence Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 158-185, March.
- Melnykov, Volodymyr & Chen, Wei-Chen & Maitra, Ranjan, 2012. "MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i12).
- Henk Kiers, 1991. "Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 197-212, June.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Alexander H. Foss & Marianthi Markatou & Bonnie Ray, 2019. "Distance Metrics and Clustering Methods for Mixed‐type Data," International Statistical Review, International Statistical Institute, vol. 87(1), pages 80-109, April.
- Glenn Milligan, 1980. "An examination of the effect of six types of error perturbation on fifteen clustering algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 325-342, September.
- Christian Hennig & Tim F. Liao, 2013. "How to find an appropriate clustering for mixed-type variables with application to socio-economic stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(3), pages 309-369, May.
- Angelos Markos & Odysseas Moschidis & Theodore Chadjipantelis, 2020. "Sequential dimension reduction and clustering of mixed-type data," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 12(3), pages 228-246.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Cerasa, 2016. "Combining homogeneous groups of preclassified observations with application to international trade," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 229-259, August.
- Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
- Christian Hennig, 2022. "An empirical comparison and characterisation of nine popular clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 201-229, March.
- Kensuke Tanioka & Hiroshi Yadohisa, 2019. "Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 73-93, April.
- Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
- Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
- Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
- Layal Christine Lettry, 2023. "Clustering the Swiss Pension Register," FSES Working Papers 529, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009.
"A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
- Selin Atalay & Wayne S. Desarbo & Simon J. Blanchard, 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Post-Print hal-00458377, HAL.
- Theresa Ullmann & Anna Beer & Maximilian Hünemörder & Thomas Seidl & Anne-Laure Boulesteix, 2023. "Over-optimistic evaluation and reporting of novel cluster algorithms: an illustrative study," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 211-238, March.
- Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.
- Aurora Torrente & Juan Romo, 2021. "Initializing k-means Clustering by Bootstrap and Data Depth," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 232-256, July.
- J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
- Masaki Mitsuhiro & Hiroshi Yadohisa, 2015. "Reduced $$k$$ k -means clustering with MCA in a low-dimensional space," Computational Statistics, Springer, vol. 30(2), pages 463-475, June.
- Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
- Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
- Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
- Donatella Vicari & Paolo Giordani, 2023. "CPclus: Candecomp/Parafac Clustering Model for Three-Way Data," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 432-465, July.
- Michael Brusco & Douglas Steinley, 2007. "A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 583-600, December.
- Michael C. Thrun & Alfred Ultsch, 2021. "Using Projection-Based Clustering to Find Distance- and Density-Based Clusters in High-Dimensional Data," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 280-312, July.
More about this item
Keywords
Cluster benchmarking; Partitioning; Mixed-type data; Heterogeneous data; K-Means;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:17:y:2023:i:3:d:10.1007_s11634-022-00521-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.