IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v17y2023i1d10.1007_s11634-022-00491-w.html
   My bibliography  Save this article

Minimum adjusted Rand index for two clusterings of a given size

Author

Listed:
  • José E. Chacón

    (Universidad de Extremadura)

  • Ana I. Rastrojo

    (Departamento de Matemáticas)

Abstract

The adjusted Rand index (ARI) is commonly used in cluster analysis to measure the degree of agreement between two data partitions. Since its introduction, exploring the situations of extreme agreement and disagreement under different circumstances has been a subject of interest, in order to achieve a better understanding of this index. Here, an explicit formula for the lowest possible value of the ARI for two clusterings of given sizes is shown, and moreover a specific pair of clusterings achieving such a bound is provided.

Suggested Citation

  • José E. Chacón & Ana I. Rastrojo, 2023. "Minimum adjusted Rand index for two clusterings of a given size," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 125-133, March.
  • Handle: RePEc:spr:advdac:v:17:y:2023:i:1:d:10.1007_s11634-022-00491-w
    DOI: 10.1007/s11634-022-00491-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-022-00491-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-022-00491-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Brusco & Douglas Steinley, 2008. "A Binary Integer Program to Maximize the Agreement Between Partitions," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 185-193, November.
    2. Irene Charon & Lucile Denoeud & Alain Guenoche & Olivier Hudry, 2006. "Maximum Transfer Distance Between Partitions," Journal of Classification, Springer;The Classification Society, vol. 23(1), pages 103-121, June.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    4. H. Messatfa, 1992. "An algorithm to maximize the agreement between partitions," Journal of Classification, Springer;The Classification Society, vol. 9(1), pages 5-15, January.
    5. Douglas Steinley & Gretchen Hendrickson & Michael Brusco, 2015. "A Note on Maximizing the Agreement Between Partitions: A Stepwise Optimal Algorithm and Some Properties," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 114-126, April.
    6. Ahmed N. Albatineh & Magdalena Niewiadomska-Bugaj & Daniel Mihalko, 2006. "On Similarity Indices and Correction for Chance Agreement," Journal of Classification, Springer;The Classification Society, vol. 23(2), pages 301-313, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    2. Isabella Morlini & Sergio Zani, 2012. "Dissimilarity and similarity measures for comparing dendrograms and their applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 85-105, July.
    3. Matthijs J. Warrens & Hanneke Hoef, 2022. "Understanding the Adjusted Rand Index and Other Partition Comparison Indices Based on Counting Object Pairs," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 487-509, November.
    4. Douglas Steinley & Gretchen Hendrickson & Michael Brusco, 2015. "A Note on Maximizing the Agreement Between Partitions: A Stepwise Optimal Algorithm and Some Properties," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 114-126, April.
    5. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    6. Theresa Ullmann & Anna Beer & Maximilian Hünemörder & Thomas Seidl & Anne-Laure Boulesteix, 2023. "Over-optimistic evaluation and reporting of novel cluster algorithms: an illustrative study," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 211-238, March.
    7. Martina Sundqvist & Julien Chiquet & Guillem Rigaill, 2023. "Adjusting the adjusted Rand Index," Computational Statistics, Springer, vol. 38(1), pages 327-347, March.
    8. Lucile Denœud, 2008. "Transfer distance between partitions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 2(3), pages 279-294, December.
    9. Antonio D’Ambrosio & Sonia Amodio & Carmela Iorio & Giuseppe Pandolfo & Roberta Siciliano, 2021. "Adjusted Concordance Index: an Extensionl of the Adjusted Rand Index to Fuzzy Partitions," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 112-128, April.
    10. Matthijs Warrens, 2008. "On Similarity Coefficients for 2×2 Tables and Correction for Chance," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 487-502, September.
    11. Valerie Robert & Yann Vasseur & Vincent Brault, 2021. "Comparing High-Dimensional Partitions with the Co-clustering Adjusted Rand Index," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 158-186, April.
    12. Johann Kraus & Christoph Müssel & Günther Palm & Hans Kestler, 2011. "Multi-objective selection for collecting cluster alternatives," Computational Statistics, Springer, vol. 26(2), pages 341-353, June.
    13. Ahmed Albatineh & Magdalena Niewiadomska-Bugaj, 2011. "Correcting Jaccard and other similarity indices for chance agreement in cluster analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(3), pages 179-200, October.
    14. Jeffrey L. Andrews & Ryan Browne & Chelsey D. Hvingelby, 2022. "On Assessments of Agreement Between Fuzzy Partitions," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 326-342, July.
    15. Ekaterina Kovaleva & Boris Mirkin, 2015. "Bisecting K-Means and 1D Projection Divisive Clustering: A Unified Framework and Experimental Comparison," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 414-442, October.
    16. Jonathon J. O’Brien & Michael T. Lawson & Devin K. Schweppe & Bahjat F. Qaqish, 2020. "Suboptimal Comparison of Partitions," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 435-461, July.
    17. Sung-Ho Kim & Geonyoup Noh, 2013. "Model Similarity and Rank-Order Based Classification of Bayesian Networks," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 428-452, October.
    18. Andrzej Młodak, 2021. "k-Means, Ward and Probabilistic Distance-Based Clustering Methods with Contiguity Constraint," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 313-352, July.
    19. Santi, Éverton & Aloise, Daniel & Blanchard, Simon J., 2016. "A model for clustering data from heterogeneous dissimilarities," European Journal of Operational Research, Elsevier, vol. 253(3), pages 659-672.
    20. Isabella Morlini & Sergio Zani, 2012. "A New Class of Weighted Similarity Indices Using Polytomous Variables," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 199-226, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:17:y:2023:i:1:d:10.1007_s11634-022-00491-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.