IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v46y2019i11p2010-2029.html
   My bibliography  Save this article

Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations

Author

Listed:
  • A. Hajrajabi
  • M. Maleki

Abstract

We propose data generating structures which can be represented as the nonlinear autoregressive models with single and finite mixtures of scale mixtures of skew normal innovations. This class of models covers symmetric/asymmetric and light/heavy-tailed distributions, so provide a useful generalization of the symmetrical nonlinear autoregressive models. As semiparametric and nonparametric curve estimation are the approaches for exploring the structure of a nonlinear time series data set, in this article the semiparametric estimator for estimating the nonlinear function of the model is investigated based on the conditional least square method and nonparametric kernel approach. Also, an Expectation–Maximization-type algorithm to perform the maximum likelihood (ML) inference of unknown parameters of the model is proposed. Furthermore, some strong and weak consistency of the semiparametric estimator in this class of models are presented. Finally, to illustrate the usefulness of the proposed model, some simulation studies and an application to real data set are considered.

Suggested Citation

  • A. Hajrajabi & M. Maleki, 2019. "Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(11), pages 2010-2029, August.
  • Handle: RePEc:taf:japsta:v:46:y:2019:i:11:p:2010-2029
    DOI: 10.1080/02664763.2019.1575953
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2019.1575953
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2019.1575953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maleki, Mohsen & Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Pho, Kim-Hung, 2020. "Modeling and forecasting the spread and death rate of coronavirus (COVID-19) in the world using time series models," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Akram Hoseinzadeh & Mohsen Maleki & Zahra Khodadadi, 2021. "Heteroscedastic nonlinear regression models using asymmetric and heavy tailed two-piece distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 451-467, September.
    3. Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:11:p:2010-2029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.