IDEAS home Printed from https://ideas.repec.org/a/sgm/pzwzuw/v15i66y2017p145-161.html
   My bibliography  Save this article

Zastosowanie modeli zdarzen konkurujacych do badania ryzyka kredytowego

Author

Listed:
  • Ewa Wycinka

    (Uniwersytet Gdanski, Katedra Statystyki)

Abstract

Credit risk arises from the debtor’s possible failure to meet the terms and conditions of the credit contract. As a result, the bank does not receive a particular payment stipulated by the contractual provisions. Credit risk usually equates with the credit taker’s insolvency. Hu and Cheng (2015) note the shortage of studies devoted to other kinds of credit risks competing with the risk of default and their influence on the evaluation of the probability of default. In the article, a default and an early repayment are considered to be competing risks. Two approaches were used to research the intensity of competing risks: evaluation of cause-specific hazard and sub-distribution hazard respectively. The interpretation principles within the results acquired by the use of either method have been discussed. For either of the approaches, proper regression models have been set up, alongside conducting the sensitivity analysis. The results have been duly compared. The empirical study employed a sample of 5000 sixty-months’ credits granted by one of the Polish financial institutions. Application characteristics of the credit takers have been used in regression models as covariates.

Suggested Citation

  • Ewa Wycinka, 2017. "Zastosowanie modeli zdarzen konkurujacych do badania ryzyka kredytowego," Problemy Zarzadzania, University of Warsaw, Faculty of Management, vol. 15(66), pages 145-161.
  • Handle: RePEc:sgm:pzwzuw:v:15:i:66:y:2017:p:145-161
    as

    Download full text from publisher

    File URL: https://press.wz.uw.edu.pl/ems/vol15/iss66/9
    Download Restriction: no

    File URL: http://pz.wz.uw.edu.pl/en
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G Andreeva, 2006. "European generic scoring models using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1180-1187, October.
    2. J Banasik & J N Crook & L C Thomas, 1999. "Not if but when will borrowers default," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1185-1190, December.
    3. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    4. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:syb:wpbsba:03/2013 is not listed on IDEAS
    2. T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
    3. Andreeva, Galina & Ansell, Jake & Crook, Jonathan, 2007. "Modelling profitability using survival combination scores," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1537-1549, December.
    4. Ewa Wycinka, 2015. "Modelling Time to Default Or Early Repayment as Competing Risks (Modelowanie czasu do zaprzestania splat rat kredytu lub wczesniejszej splaty kredytu jako zdarzen konkurujacych )," Problemy Zarzadzania, University of Warsaw, Faculty of Management, vol. 13(55), pages 146-157.
    5. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    6. G Andreeva, 2006. "European generic scoring models using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1180-1187, October.
    7. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Dynamic survival models with varying coefficients for credit risks," European Journal of Operational Research, Elsevier, vol. 275(1), pages 319-333.
    8. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    9. Divino, Jose Angelo & Rocha, Líneke Clementino Sleegers, 2013. "Probability of default in collateralized credit operations," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 276-292.
    10. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    11. L N Allen & L C Rose, 2006. "Financial survival analysis of defaulted debtors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 630-636, June.
    12. M Malik & L C Thomas, 2010. "Modelling credit risk of portfolio of consumer loans," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 411-420, March.
    13. Calabrese, Raffaella & Crook, Jonathan, 2020. "Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients," European Journal of Operational Research, Elsevier, vol. 287(2), pages 749-761.
    14. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    15. Jose Angelo Divino & Edna Souza Lima & Jaime Orrillo, 2013. "Interest rates and default in unsecured loan markets," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1925-1934, December.
    16. Jackson P. Lautier & Vladimir Pozdnyakov & Jun Yan, 2022. "On the Convergence of Credit Risk in Current Consumer Automobile Loans," Papers 2211.09176, arXiv.org, revised Jan 2024.
    17. Leow, Mindy & Crook, Jonathan, 2014. "Intensity models and transition probabilities for credit card loan delinquencies," European Journal of Operational Research, Elsevier, vol. 236(2), pages 685-694.
    18. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Identifying hidden patterns in credit risk survival data using Generalised Additive Models," European Journal of Operational Research, Elsevier, vol. 277(1), pages 366-376.
    19. Justin A. Sirignano & Gerry Tsoukalas & Kay Giesecke, 2016. "Large-Scale Loan Portfolio Selection," Operations Research, INFORMS, vol. 64(6), pages 1239-1255, December.
    20. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    21. Liu, Fan & Hua, Zhongsheng & Lim, Andrew, 2015. "Identifying future defaulters: A hierarchical Bayesian method," European Journal of Operational Research, Elsevier, vol. 241(1), pages 202-211.

    More about this item

    Keywords

    Fine-Gray models; sensitivity analysis of Cox models; probability of default; early repayments;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgm:pzwzuw:v:15:i:66:y:2017:p:145-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/somuwpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.