IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v236y2014i2p685-694.html
   My bibliography  Save this article

Intensity models and transition probabilities for credit card loan delinquencies

Author

Listed:
  • Leow, Mindy
  • Crook, Jonathan

Abstract

We estimate the probability of delinquency and default for a sample of credit card loans using intensity models, via semi-parametric multiplicative hazard models with time-varying covariates. It is the first time these models, previously applied for the estimation of rating transitions, are used on retail loans. Four states are defined in this non-homogenous Markov chain: up-to-date, one month in arrears, two months in arrears, and default; where transitions between states are affected by individual characteristics of the debtor at application and their repayment behaviour since. These intensity estimations allow for insights into the factors that affect movements towards (and recovery from) delinquency, and into default (or not). Results indicate that different types of debtors behave differently while in different states. The probabilities estimated for each type of transition are then used to make out-of-sample predictions over a specified period of time.

Suggested Citation

  • Leow, Mindy & Crook, Jonathan, 2014. "Intensity models and transition probabilities for credit card loan delinquencies," European Journal of Operational Research, Elsevier, vol. 236(2), pages 685-694.
  • Handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:685-694
    DOI: 10.1016/j.ejor.2013.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713010102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Malik, Madhur & Thomas, Lyn C., 2012. "Transition matrix models of consumer credit ratings," International Journal of Forecasting, Elsevier, vol. 28(1), pages 261-272.
    3. Kadam, Ashay & Lenk, Peter, 2008. "Bayesian inference for issuer heterogeneity in credit ratings migration," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2267-2274, October.
    4. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    5. Robert B. Avery & Paul S. Calem & Glenn B. Canner, 2004. "Consumer credit scoring: do situational circumstances matter?," BIS Working Papers 146, Bank for International Settlements.
    6. J Banasik & J N Crook & L C Thomas, 1999. "Not if but when will borrowers default," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1185-1190, December.
    7. Avery, Robert B. & Calem, Paul S. & Canner, Glenn B., 2004. "Consumer credit scoring: Do situational circumstances matter?," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 835-856, April.
    8. Jon Frye, 2000. "Collateral damage detected," Emerging Issues, Federal Reserve Bank of Chicago, issue Sep.
    9. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    10. Jonathan Crook & Tony Bellotti, 2010. "Time varying and dynamic models for default risk in consumer loans," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 283-305, April.
    11. Niels Keiding & Per Kragh Andersen, 1989. "Nonparametric Estimation of Transition Intensities and Transition Probabilities: A Case Study of a Two‐State Markov Process," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(2), pages 319-329, June.
    12. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    13. Jon Frye, 2000. "Depressing recoveries," Emerging Issues, Federal Reserve Bank of Chicago, issue Oct.
    14. Stefanescu, Catalina & Tunaru, Radu & Turnbull, Stuart, 2009. "The credit rating process and estimation of transition probabilities: A Bayesian approach," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 216-234, March.
    15. Leow, Mindy & Mues, Christophe, 2012. "Predicting loss given default (LGD) for residential mortgage loans: A two-stage model and empirical evidence for UK bank data," International Journal of Forecasting, Elsevier, vol. 28(1), pages 183-195.
    16. Bellotti, Tony & Crook, Jonathan, 2012. "Loss given default models incorporating macroeconomic variables for credit cards," International Journal of Forecasting, Elsevier, vol. 28(1), pages 171-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    2. Kim, Hyeongjun & Cho, Hoon & Ryu, Doojin, 2018. "An empirical study on credit card loan delinquency," Economic Systems, Elsevier, vol. 42(3), pages 437-449.
    3. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    4. Perko, Igor, 2017. "Behaviour-based short-term invoice probability of default evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1045-1054.
    5. Hugo E. Caceres & Ben Moews, 2024. "Evaluating utility in synthetic banking microdata applications," Papers 2410.22519, arXiv.org.
    6. Arno Botha & Conrad Beyers & Pieter de Villiers, 2020. "The loss optimisation of loan recovery decision times using forecast cash flows," Papers 2010.05601, arXiv.org.
    7. Bocchio, Cecilia & Crook, Jonathan & Andreeva, Galina, 2023. "The impact of macroeconomic scenarios on recurrent delinquency: A stress testing framework of multi-state models for mortgages," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1655-1677.
    8. Leow, Mindy & Crook, Jonathan, 2016. "A new Mixture model for the estimation of credit card Exposure at Default," European Journal of Operational Research, Elsevier, vol. 249(2), pages 487-497.
    9. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Dynamic survival models with varying coefficients for credit risks," European Journal of Operational Research, Elsevier, vol. 275(1), pages 319-333.
    10. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    11. Chen, Shou & Jiang, Xiangqian & He, Hongbo & Zhou, Xi, 2020. "A pricing model with dynamic repayment flows for guaranteed consumer loans," Economic Modelling, Elsevier, vol. 91(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    2. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    3. Voß, Sebastian & Weißbach, Rafael, 2014. "A score-test on measurement errors in rating transition times," Journal of Econometrics, Elsevier, vol. 180(1), pages 16-29.
    4. L N Allen & L C Rose, 2006. "Financial survival analysis of defaulted debtors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 630-636, June.
    5. Bocchio, Cecilia & Crook, Jonathan & Andreeva, Galina, 2023. "The impact of macroeconomic scenarios on recurrent delinquency: A stress testing framework of multi-state models for mortgages," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1655-1677.
    6. Mariusz Górajski & Dobromił Serwa & Zuzanna Wośko, 2019. "Measuring expected time to default under stress conditions for corporate loans," Empirical Economics, Springer, vol. 57(1), pages 31-52, July.
    7. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.
    8. Allen, D.E. & Powell, R.J. & Singh, A.K., 2016. "Take it to the limit: Innovative CVaR applications to extreme credit risk measurement," European Journal of Operational Research, Elsevier, vol. 249(2), pages 465-475.
    9. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    10. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    11. Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
    12. Wozabal, David & Hochreiter, Ronald, 2012. "A coupled Markov chain approach to credit risk modeling," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 403-415.
    13. Jeffrey R. Stokes, 2023. "A nonlinear inversion procedure for modeling the effects of economic factors on credit risk migration," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 855-878, October.
    14. M Malik & L C Thomas, 2010. "Modelling credit risk of portfolio of consumer loans," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 411-420, March.
    15. Areski Cousin & Jérôme Lelong & Tom Picard, 2023. "Rating transitions forecasting: a filtering approach," Post-Print hal-03347521, HAL.
    16. Michael Kalkbrener & Natalie Packham, 2024. "A Markov approach to credit rating migration conditional on economic states," Papers 2403.14868, arXiv.org.
    17. Areski Cousin & J'er^ome Lelong & Tom Picard, 2021. "Rating transitions forecasting: a filtering approach," Papers 2109.10567, arXiv.org, revised Jun 2023.
    18. Thomas Lagner & Dodozu Knyphausen‐Aufseß, 2012. "Rating Agencies as Gatekeepers to the Capital Market: Practical Implications of 40 Years of Research," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 21(3), pages 157-202, August.
    19. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    20. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:685-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.