IDEAS home Printed from https://ideas.repec.org/a/sgh/annals/i45y2017p259-272.html
   My bibliography  Save this article

Ekonometryczne modelowanie i prognozowanie rozwoju polskiego sektora ICT z uwzględnieniem wskaźników makroekonomicznych

Author

Listed:
  • Paweł Kaczmarczyk

    (The State University of Applied Sciences in Płock)

Abstract

Celem artykułu jest analiza rozwoju polskiego sektora ICT w latach 2007–2014. W części teoretycznej zaprezentowano dotychczasową ewolucję obowiązującego pojęcia i stosowanej klasyfikacji sektora ICT według NACE w UE oraz PKD w Polsce. Opisano również znaczenie sektora ICT dla kształtowania gospodarki opartej na wiedzy i rozwoju społeczno-gospodarczego. W części empirycznej przedstawiono ekonometryczną analizę przychodów netto ze sprzedaży w polskim sektorze ICT w latach 2007–2014. Wykorzystano dane roczne, które są dostępne w publikacjach GUS. Zdefiniowano 19 potencjalnych zmiennych objaśniających. Spośród testowanych modeli ostatecznie wybrano te, które były najlepiej dopasowane do danych i które umożliwiły również uzyskanie najniższych błędów ex ante dotyczących prognoz przychodów netto ze sprzedaży w sektorze ICT do 2017 r.

Suggested Citation

  • Paweł Kaczmarczyk, 2017. "Ekonometryczne modelowanie i prognozowanie rozwoju polskiego sektora ICT z uwzględnieniem wskaźników makroekonomicznych," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 45, pages 259-272.
  • Handle: RePEc:sgh:annals:i:45:y:2017:p:259-272
    as

    Download full text from publisher

    File URL: http://rocznikikae.sgh.waw.pl/p/roczniki_kae_z45_19.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David F. Hendry & Bent Nielsen, 2007. "Preface to Econometric Modeling: A Likelihood Approach," Introductory Chapters, in: Econometric Modeling: A Likelihood Approach, Princeton University Press.
    2. Cambini, Carlo & Jiang, Yanyan, 0. "Broadband investment and regulation: A literature review," Telecommunications Policy, Elsevier, vol. 33(10-11), pages 559-574, November.
    3. David F. Hendry & Bent Nielsen, 2007. "The Bernoulli model, from Econometric Modeling: A Likelihood Approach," Introductory Chapters, in: Econometric Modeling: A Likelihood Approach, Princeton University Press.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Airapetyan, Mamikon (Айрапетян, Мамикон) & Aleschenko, Natalya (Алещенко, Наталья) & Arushanyan, Vitaliy (Арушанян, Виталий), 2015. "Experience in Analysis and Forecasting of Cyclical Fluctuations in the Economy (On the Example of the National Bureau of Economic Research in Application to the Economy and the Anti-Crisis Policy of R," Published Papers madd5, Russian Presidential Academy of National Economy and Public Administration.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    2. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    3. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    4. Paul Plummer & Michael Taylor, 2011. "Enterprise and Competitive Advantage in the Australian Context: A Spatial Econometric Perspective," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(3), pages 311-330, January.
    5. Monique Reid & Gideon Rand, 2015. "A Sticky Information Phillips Curve for South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 83(4), pages 506-526, December.
    6. Muhammad Akhtaruzzaman & Christopher Hajzler & P. Dorian Owen, 2018. "Does institutional quality resolve the Lucas Paradox?," Applied Economics, Taylor & Francis Journals, vol. 50(5), pages 455-474, January.
    7. W H Boshoff, 2012. "Gasoline, Diesel Fuel And Jet Fuel Demand In South Africa," Studies in Economics and Econometrics, Taylor & Francis Journals, vol. 36(1), pages 43-78, April.
    8. Mr. Andrew J Swiston, 2011. "Official Dollarization As a Monetary Regime: Its Effectson El Salvador," IMF Working Papers 2011/129, International Monetary Fund.
    9. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    10. P. Dorian Owen, 2017. "Evaluating Ingenious Instruments for Fundamental Determinants of Long-Run Economic Growth and Development," Econometrics, MDPI, vol. 5(3), pages 1-33, September.
    11. Mrs. Swarnali A Hannan, 2015. "If the Fed Acts, How Do You React? The Liftoff Effect on Capital Flows," IMF Working Papers 2015/256, International Monetary Fund.
    12. Owen, P. Dorian, 2018. "Replication to assess statistical adequacy," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-16.
    13. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    14. Guasch, J. Luis & Pena, Jorge, 2019. "Investment Climate Effects on Alternative Firm-Level Productivity Measures," UC3M Working papers. Economics 28639, Universidad Carlos III de Madrid. Departamento de Economía.
    15. Takamitsu Kurita, 2019. "A Recursive Monte Carlo Study of Structural-Break Sensitivity of Adjustment Coefficients in Cointegrated VAR Systems," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 251-270, June.
    16. Matthew Greenwood-Nimmo & Daan Steenkamp & Rossouw van Jaarsveld, 2022. "A banklevel analysis of interest rate passthrough in South Africa," Working Papers 11027, South African Reserve Bank.
    17. Francesco Grigoli & José M. Mota, 2017. "Interest rate pass-through in the Dominican Republic," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-25, December.
    18. Vassilios Bazinas & Bent Nielsen, 2022. "Causal Transmission in Reduced-Form Models," Econometrics, MDPI, vol. 10(2), pages 1-25, March.
    19. Steven Lehrer & Tian Xie, 2017. "Box Office Buzz: Does Social Media Data Steal the Show from Model Uncertainty When Forecasting for Hollywood?," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 749-755, December.
    20. Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015. "Statistical model selection with “Big Data”," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:annals:i:45:y:2017:p:259-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michał Bernardelli (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.