IDEAS home Printed from https://ideas.repec.org/h/pup/chapts/8352-1.html
   My bibliography  Save this book chapter

The Bernoulli model, from Econometric Modeling: A Likelihood Approach

In: Econometric Modeling: A Likelihood Approach

Author

Listed:
  • David F. Hendry

    (University of Oxford, Nuffield College.)

  • Bent Nielsen

    (University of Oxford, Nuffield College)

Abstract

Econometric Modeling provides a new and stimulating introduction to econometrics, focusing on modeling. The key issue confronting empirical economics is to establish sustainable relationships that are both supported by data and interpretable from economic theory. The unified likelihood-based approach of this book gives students the required statistical foundations of estimation and inference, and leads to a thorough understanding of econometric techniques. David Hendry and Bent Nielsen introduce modeling for a range of situations, including binary data sets, multiple regression, and cointegrated systems. In each setting, a statistical model is constructed to explain the observed variation in the data, with estimation and inference based on the likelihood function. Substantive issues are always addressed, showing how both statistical and economic assumptions can be tested and empirical results interpreted. Important empirical problems such as structural breaks, forecasting, and model selection are covered, and Monte Carlo simulation is explained and applied. Econometric Modeling is a self-contained introduction for advanced undergraduate or graduate students. Throughout, data illustrate and motivate the approach, and are available for computer-based teaching. Technical issues from probability theory and statistical theory are introduced only as needed. Nevertheless, the approach is rigorous, emphasizing the coherent formulation, estimation, and evaluation of econometric models relevant for empirical research.

Suggested Citation

  • David F. Hendry & Bent Nielsen, 2007. "The Bernoulli model, from Econometric Modeling: A Likelihood Approach," Introductory Chapters, in: Econometric Modeling: A Likelihood Approach, Princeton University Press.
  • Handle: RePEc:pup:chapts:8352-1
    as

    Download full text from publisher

    File URL: http://assets.press.princeton.edu/chapters/s8352.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    modeling; sustainable relationships; unified likelihood; estimation; inference; binary sets; multiple regression; cointegrated systems;
    All these keywords.

    JEL classification:

    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pup:chapts:8352-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: http://press.princeton.edu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.