IDEAS home Printed from https://ideas.repec.org/a/taf/specan/v6y2011i3p311-330.html
   My bibliography  Save this article

Enterprise and Competitive Advantage in the Australian Context: A Spatial Econometric Perspective

Author

Listed:
  • Paul Plummer
  • Michael Taylor

Abstract

Contemporary understanding of the evolution of the geography of uneven development is dominated by research derived from either the ‘new’ geographical economics or the new regionalism, typically in the context of either the European Union or North America. By way of contrast, we consider local economic performance in the Australian context. Building on Fingleton's work, we employ a spatial econometric modeling methodology to account for the role of both endogenous technological change and export orientation in determining local competitive advantage. The evidence suggests that competitiveness depends on both the indigenous characteristics of a local economy and its exposure to global competition. Entreprise et compétitivité dans le contexte australien: une perspective économétrique spatiale R ésumé Les connaissances contemporaines sur l’évolution de la géographie de développements irréguliers sont dominées par la recherche dérivée d'une « nouvelle » économie géographique ou du nouveau régionalisme, généralement dans le contexte de l'Union européenne ou de l'Amérique du Nord. A titre de contraste, nous examinons les performances économiques locales dans le contexte de l'Australie. En nous basant sur Fingleton, nous appliquons une méthodologie de modélisation économétrique spatiale pour interpréter le rôle de variations technologiques endogènes et de l'orientation de l'exportation dans la détermination de la compétitivité locale. Les résultats des recherches indiquent que la compétitivité est tributaire à la fois des caractéristiques indigènes d'une économie locale et de son exposition à la concurrence mondiale. Empresas y la ventaja competitiva en el contexto australiano: una perspectiva econométrica espacial E xtracto La comprensión contemporánea de la geografía evolutiva del desarrollo desigual está dominada por investigación derivada de la ‘nueva’ economía geográfica o del nuevo regionalismo, típicamente en el contexto de la Unión Europea o de Norteamérica. A modo de contraste, consideramos el rendimiento económico local dentro del contexto australiano. Basándonos en Fingleton, empleamos una metodología de modelación econométrica espacial para tener en cuenta la función del cambio tecnológico endógeno y la orientación de la exportación a la hora de determinar la ventaja competitiva local. La evidencia sugiere que la competitividad depende de las características indígenas de una economía local y en su exposición a la competencia global.

Suggested Citation

  • Paul Plummer & Michael Taylor, 2011. "Enterprise and Competitive Advantage in the Australian Context: A Spatial Econometric Perspective," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(3), pages 311-330, January.
  • Handle: RePEc:taf:specan:v:6:y:2011:i:3:p:311-330
    DOI: 10.1080/17421772.2011.586719
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17421772.2011.586719
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17421772.2011.586719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David F. Hendry & Bent Nielsen, 2007. "Preface to Econometric Modeling: A Likelihood Approach," Introductory Chapters, in: Econometric Modeling: A Likelihood Approach, Princeton University Press.
    2. Henry G. Overman, 2004. "Can we learn anything from economic geography proper?," Journal of Economic Geography, Oxford University Press, vol. 4(5), pages 501-516, November.
    3. David F. Hendry & Bent Nielsen, 2007. "The Bernoulli model, from Econometric Modeling: A Likelihood Approach," Introductory Chapters, in: Econometric Modeling: A Likelihood Approach, Princeton University Press.
    4. Christopher F Baum, 2006. "An Introduction to Modern Econometrics using Stata," Stata Press books, StataCorp LP, number imeus, March.
    5. Mark Roberts & Mark Setterfield, 2010. "Endogenous Regional Growth: A Critical Survey," Chapters, in: Mark Setterfield (ed.), Handbook of Alternative Theories of Economic Growth, chapter 21, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Fingleton & P. Cheshire & H. Garretsen & D. Igliori & J. Le Gallo & P. McCann & J. McCombie & V. Monastiriotis & B. Moore & M. Roberts, 2011. "Editorial," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(3), pages 243-248, September.
    2. Paul Plummer & Matthew Tonts, 2013. "Do History and Geography Matter? Regional Unemployment Dynamics in a Resource-Dependent Economy: Evidence from Western Australia, 1984–2011," Environment and Planning A, , vol. 45(12), pages 2919-2938, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    2. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    3. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    4. Paweł Kaczmarczyk, 2017. "Ekonometryczne modelowanie i prognozowanie rozwoju polskiego sektora ICT z uwzględnieniem wskaźników makroekonomicznych," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 45, pages 259-272.
    5. Monique Reid & Gideon Rand, 2015. "A Sticky Information Phillips Curve for South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 83(4), pages 506-526, December.
    6. Muhammad Akhtaruzzaman & Christopher Hajzler & P. Dorian Owen, 2018. "Does institutional quality resolve the Lucas Paradox?," Applied Economics, Taylor & Francis Journals, vol. 50(5), pages 455-474, January.
    7. W H Boshoff, 2012. "Gasoline, Diesel Fuel And Jet Fuel Demand In South Africa," Studies in Economics and Econometrics, Taylor & Francis Journals, vol. 36(1), pages 43-78, April.
    8. Mr. Andrew J Swiston, 2011. "Official Dollarization As a Monetary Regime: Its Effectson El Salvador," IMF Working Papers 2011/129, International Monetary Fund.
    9. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    10. P. Dorian Owen, 2017. "Evaluating Ingenious Instruments for Fundamental Determinants of Long-Run Economic Growth and Development," Econometrics, MDPI, vol. 5(3), pages 1-33, September.
    11. Mrs. Swarnali A Hannan, 2015. "If the Fed Acts, How Do You React? The Liftoff Effect on Capital Flows," IMF Working Papers 2015/256, International Monetary Fund.
    12. Owen, P. Dorian, 2018. "Replication to assess statistical adequacy," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-16.
    13. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    14. Guasch, J. Luis & Pena, Jorge, 2019. "Investment Climate Effects on Alternative Firm-Level Productivity Measures," UC3M Working papers. Economics 28639, Universidad Carlos III de Madrid. Departamento de Economía.
    15. Takamitsu Kurita, 2019. "A Recursive Monte Carlo Study of Structural-Break Sensitivity of Adjustment Coefficients in Cointegrated VAR Systems," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 251-270, June.
    16. Matthew Greenwood-Nimmo & Daan Steenkamp & Rossouw van Jaarsveld, 2022. "A banklevel analysis of interest rate passthrough in South Africa," Working Papers 11027, South African Reserve Bank.
    17. Francesco Grigoli & José M. Mota, 2017. "Interest rate pass-through in the Dominican Republic," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-25, December.
    18. Vassilios Bazinas & Bent Nielsen, 2022. "Causal Transmission in Reduced-Form Models," Econometrics, MDPI, vol. 10(2), pages 1-25, March.
    19. Steven Lehrer & Tian Xie, 2017. "Box Office Buzz: Does Social Media Data Steal the Show from Model Uncertainty When Forecasting for Hollywood?," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 749-755, December.
    20. Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015. "Statistical model selection with “Big Data”," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:6:y:2011:i:3:p:311-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RSEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.