IDEAS home Printed from https://ideas.repec.org/a/scn/guhrje/2017_3_14.html
   My bibliography  Save this article

Планирование функционирования предприятия в условиях риска и неопределенности во внешней и внутренней среде. Enterprise operation planning in the conditions of risk and uncertainty in the external and internal environment

Author

Listed:
  • Титов В. В.

    (Новосибирский государственный университет)

  • Безмельницын Д. А.
  • Напреева С. К.

Abstract

Оптимизация планирования деятельности предприятия с учетом риска и неопределенности внешней и внутренней среды представляется сложной научно-методологической проблемой. Ее решение важно для практики планирования. Поэтому актуальность данной темы исследований не вызывает сомнений. Планирование основано на использовании многоуровневой системы моделей. На верхнем уровне достижение ключевых стратегических показателей обеспечивается разработкой и внедрением нововведений, в основном связанных с планированием выпуска новой высокотехнологичной продукции. Однако именно на этом уровне в наибольшей степени возникает влияние рисков и неопределенности на процессы планирования разработки, производства и реализации новой продукции. В научной литературе предлагается использовать для этой цели стохастические графы с возвратами. Эта идея поддерживается и в этой работе. Однако реализация такой идеи требует дополнительных методологических и методических разработок, проведения количественных расчетов. Согласование стратегических решений с тактическими планами основано на идее устранения экономических и других рисков, связанных с хозяйственной деятельностью предприятия в тактическом планировании, за счет создания стохастических резервов на основе реализации дополнительных нововведений, обеспечивающих получение сверхплановых объемов продаж, прибыли и других показателей стратегического плана. Организация оперативного управления производством представляется итеративным, скользящим процессом (уменьшающим риски в производстве), реализуемым с учетом ограничений тактического управления. Optimization of the enterprise activity planning taking into account the risk and uncertainty of the external and internal environment is a complex scientific and methodological problem. Its solution is important for the planning practice. Therefore, the relevance of this research topic is beyond doubt. Planning is based on the use of a multilevel system of models. At the top level, the achievement of key strategic indicators is ensured by the development and implementation of innovations, mainly related to the planning of the release of new high-tech products. However, it is at this level that the risks and uncertainties have the greatest impact on the planning processes for the development, production and marketing of new products. In the scientific literature it is proposed to use the stochastic graphs with returns for this purpose. This idea is also supported in this work. However, the implementation of such an idea requires additional methodological developments and quantitative calculations. The coordination of strategic decisions with tactical plans is based on the idea of eliminating the economic and other risks associated with the economic activity of the enterprise in tactical planning, by creating the stochastic reserves based on the implementation of additional innovations that ensure the receipt of above-target sales volumes, profits and other indicators of the strategic plan. The organization of operational management of production is represented by an iterative, sliding process (reducing risks in production), which is realized taking into account the limitations of tactical control.

Suggested Citation

  • Титов В. В. & Безмельницын Д. А. & Напреева С. К., 2017. "Планирование функционирования предприятия в условиях риска и неопределенности во внешней и внутренней среде. Enterprise operation planning in the conditions of risk and uncertainty in the external and," Мир экономики и управления // Вестник НГУ. Cерия: Cоциально-экономические науки, Socionet;Новосибирский государственный университет, vol. 17(3), pages 179-191.
  • Handle: RePEc:scn:guhrje:2017_3_14
    as

    Download full text from publisher

    File URL: http://nsu.ru/rs/mw/link/Media:/66356/14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denafas, Gintaras & Ruzgas, Tomas & Martuzevičius, Dainius & Shmarin, Sergey & Hoffmann, Michael & Mykhaylenko, Valeriy & Ogorodnik, Stanislav & Romanov, Mikhail & Neguliaeva, Ekaterina & Chusov, Alex, 2014. "Seasonal variation of municipal solid waste generation and composition in four East European cities," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 22-30.
    2. Koehler, Anne B. & Snyder, Ralph D. & Ord, J. Keith, 2001. "Forecasting models and prediction intervals for the multiplicative Holt-Winters method," International Journal of Forecasting, Elsevier, vol. 17(2), pages 269-286.
    3. Ramos, Francisco López & Batres, Rafael & De-la-Cruz-Márquez, Cynthia Griselle & Anzures, Melina López, 2023. "Optimization models for nopal crop planning with land usage expansion and government subsidy," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    5. Baloglu, Ulas Baran & Demir, Yakup, 2018. "Lightweight privacy-preserving data aggregation scheme for smart grid metering infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 16-24.
    6. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    7. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    8. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    9. Daniela Pencheva, 2020. "Use of Factors Related to the Consumption of Fast Moving Consumer Goods in Business Intelligence System for Managing Orders to Suppliers in Retail Chain," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 9(2), pages 124-135, August.
    10. Azumah Karim & Ananda Omotukoh Kube & Bashiru Imoro Ibn Saeed, 2020. "Modeling of Monthly Meteorological Time Series," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(4), pages 1-8.
    11. Zhenni Ding & Huayou Chen & Ligang Zhou, 2023. "Using shapely values to define subgroups of forecasts for combining," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 905-923, July.
    12. Fieger, Peter & Rice, John, 2016. "Modelling Chinese Inbound Tourism Arrivals into Christchurch," MPRA Paper 75468, University Library of Munich, Germany.
    13. J Keith Ord & Ralph D Snyder & Anne B Koehler & Rob J Hyndman & Mark Leeds, 2005. "Time Series Forecasting: The Case for the Single Source of Error State Space," Monash Econometrics and Business Statistics Working Papers 7/05, Monash University, Department of Econometrics and Business Statistics.
    14. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    15. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    16. Anis Chariri & Indira Januarti, 2017. "Audit Committee Characteristics and Integrated Reporting:Empirical Study of Companies Listed on the Johannesburg Stock Exchange," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 305-318.
    17. Kusters, Ulrich & McCullough, B.D. & Bell, Michael, 2006. "Forecasting software: Past, present and future," International Journal of Forecasting, Elsevier, vol. 22(3), pages 599-615.
    18. Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    19. Krembsler, Jonas & Spiegelberg, Sandra & Hasenfelder, Richard & Kämpf, Nicki Lena & Winter, Thomas & Winter, Nicola & Knappe, Robert, 2024. "Fare revenue forecast in public transport: A comparative case study," Research in Transportation Economics, Elsevier, vol. 105(C).
    20. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:guhrje:2017_3_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Виталия Маркова (email available below). General contact details of provider: http://socionet.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.