IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p456-d306015.html
   My bibliography  Save this article

New Express Delivery Service and Its Impact on CO 2 Emissions

Author

Listed:
  • Dragan Lazarević

    (Faculty of Transport and Traffic Engineering, University of Belgrade, 11000 Belgrade, Serbia)

  • Libor Švadlenka

    (Jan Perner Transport Faculty, University of Pardubice, 532 10 Pardubice, Czech Republic)

  • Valentina Radojičić

    (Faculty of Transport and Traffic Engineering, University of Belgrade, 11000 Belgrade, Serbia)

  • Momčilo Dobrodolac

    (Faculty of Transport and Traffic Engineering, University of Belgrade, 11000 Belgrade, Serbia)

Abstract

A rapid development of Internet technologies creates new opportunities for e-commerce, which is one of the fastest-growing segments of the entire economy. For policymakers, the most important aspects of e-commerce are related to the cost reduction in transportation, facilitation of administration and communication, innovations at the market level, and environmental issues. An unavoidable part of the e-commerce production process is related to the postal service. New market expectations of modern society lead to the consideration of upgrading the traditional express delivery service in terms of time availability. In this paper, we propose a new 24-h availability of postal and courier service so-called “post express nonstop”. To assess the potential demand for this kind of service, we propose a forecasting procedure based on the Bass diffusion model. In particular, the research is directed toward the examination of environmental issues, considering both types of services—traditional and the proposed new one. A comparison is done by analyzing CO 2 emissions in the last-mile delivery of goods to the users’ addresses. The experiment was carried out in the city of Belgrade, simulating the last-mile delivery under realistic conditions and controlling the fuel consumption and CO 2 emissions. In accordance with the results of this experiment and the forecasted number of postal items, a projection of CO 2 emissions for the new service from 2020 to 2025 was carried out. The results show a significant contribution of the proposed new express delivery service to environmental well-being and sustainability.

Suggested Citation

  • Dragan Lazarević & Libor Švadlenka & Valentina Radojičić & Momčilo Dobrodolac, 2020. "New Express Delivery Service and Its Impact on CO 2 Emissions," Sustainability, MDPI, vol. 12(2), pages 1-29, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:456-:d:306015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John A. Norton & Frank M. Bass, 1987. "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products," Management Science, INFORMS, vol. 33(9), pages 1069-1086, September.
    2. Vahideh Sadat Abedi & Oded Berman & Dmitry Krass, 2014. "Supporting New Product or Service Introductions: Location, Marketing, and Word of Mouth," Operations Research, INFORMS, vol. 62(5), pages 994-1013, October.
    3. Tianduo Peng & Sheng Zhou & Zhiyi Yuan & Xunmin Ou, 2017. "Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China," Sustainability, MDPI, vol. 9(12), pages 1-24, November.
    4. Dan Horsky & Leonard S. Simon, 1983. "Advertising and the Diffusion of New Products," Marketing Science, INFORMS, vol. 2(1), pages 1-17.
    5. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    6. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    7. Saboohi, Y. & Farzaneh, H., 2009. "Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption," Applied Energy, Elsevier, vol. 86(10), pages 1925-1932, October.
    8. Bone, Paula Fitzgerald, 1995. "Word-of-mouth effects on short-term and long-term product judgments," Journal of Business Research, Elsevier, vol. 32(3), pages 213-223, March.
    9. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    10. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    11. Pedro A. P. Dias & Hugo Yoshizaki & Patricia Favero & Jose Geraldo Vidal Vieira, 2019. "Daytime or Overnight Deliveries? Perceptions of Drivers and Retailers in São Paulo City," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    12. Jain, Dipak C & Rao, Ram C, 1990. "Effect of Price on the Demand for Durables: Modeling, Estimation, and Findings," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 163-170, April.
    13. Hubert Gatignon & Jehoshua Eliashberg & Thomas S. Robertson, 1989. "Modeling Multinational Diffusion Patterns: An Efficient Methodology," Marketing Science, INFORMS, vol. 8(3), pages 231-247.
    14. Fildes, Robert & Kumar, V., 2002. "Telecommunications demand forecasting--a review," International Journal of Forecasting, Elsevier, vol. 18(4), pages 489-522.
    15. Bozbas, Kahraman, 2008. "Biodiesel as an alternative motor fuel: Production and policies in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 542-552, February.
    16. Bruce Robinson & Chet Lakhani, 1975. "Dynamic Price Models for New-Product Planning," Management Science, INFORMS, vol. 21(10), pages 1113-1122, June.
    17. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    18. Liddell, Christine & Morris, Chris, 2010. "Fuel poverty and human health: A review of recent evidence," Energy Policy, Elsevier, vol. 38(6), pages 2987-2997, June.
    19. Sivak, Michael & Schoettle, Brandon, 2012. "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, Elsevier, vol. 22(C), pages 96-99.
    20. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    21. Murugesan, A. & Umarani, C. & Subramanian, R. & Nedunchezhian, N., 2009. "Bio-diesel as an alternative fuel for diesel engines--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 653-662, April.
    22. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    23. Peter J. Lenk & Ambar G. Rao, 1990. "New Models from Old: Forecasting Product Adoption by Hierarchical Bayes Procedures," Marketing Science, INFORMS, vol. 9(1), pages 42-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasco Silva & António Amaral & Tânia Fontes, 2023. "Sustainable Urban Last-Mile Logistics: A Systematic Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    2. Sören Lauenstein & Christoph Schank, 2022. "Design of a Sustainable Last Mile in Urban Logistics—A Systematic Literature Review," Sustainability, MDPI, vol. 14(9), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    2. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    3. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    4. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    5. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    6. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    7. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2020. "Modeling technology diffusion: a study based on market coverage and advertising efforts," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 154-162, July.
    8. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    9. Velickovic, Stevan & Radojicic, Valentina & Bakmaz, Bojan, 2016. "The effect of service rollout on demand forecasting: The application of modified Bass model to the step growing markets," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 130-140.
    10. Islam, Towhidul & Meade, Nigel, 2015. "Firm level innovation diffusion of 3G mobile connections in international context," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1138-1152.
    11. Donald Lehmann & Mercedes Esteban-Bravo, 2006. "When giving some away makes sense to jump-start the diffusion process," Marketing Letters, Springer, vol. 17(4), pages 243-254, December.
    12. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
    13. Shun-Chen Niu, 2006. "A Piecewise-Diffusion Model of New-Product Demands," Operations Research, INFORMS, vol. 54(4), pages 678-695, August.
    14. Samuel Sale, R. & Mesak, Hani I. & Inman, R. Anthony, 2017. "A dynamic marketing-operations interface model of new product updates," European Journal of Operational Research, Elsevier, vol. 257(1), pages 233-242.
    15. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    16. Hongmin Li, 2020. "Optimal Pricing Under Diffusion-Choice Models," Operations Research, INFORMS, vol. 68(1), pages 115-133, January.
    17. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    18. Xu, Mei & Xie, Pu & Xie, Bai-Chen, 2020. "Study of China's optimal solar photovoltaic power development path to 2050," Resources Policy, Elsevier, vol. 65(C).
    19. Singhal, Shakshi & Anand, Adarsh & Singh, Ompal, 2020. "Studying dynamic market size-based adoption modeling & product diffusion under stochastic environment," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    20. Christos Michalakelis & Georgia Dede & Dimitris Varoutas & Thomas Sphicopoulos, 2010. "Estimating diffusion and price elasticity with application to telecommunications," Netnomics, Springer, vol. 11(3), pages 221-242, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:456-:d:306015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.