IDEAS home Printed from https://ideas.repec.org/a/sae/urbstu/v60y2023i9p1629-1649.html
   My bibliography  Save this article

Spatialising urban health vulnerability: An analysis of NYC’s critical infrastructure during COVID-19

Author

Listed:
  • Gayatri Kawlra

    (Columbia University, USA)

  • Kazuki Sakamoto

    (Columbia University, USA)

Abstract

This paper examines how fragmentation of critical infrastructure impacts the spread of the coronavirus outbreak in New York City at the neighbourhood level. The location of transportation hubs, grocery stores, pharmacies, hospitals and parks plays an important role in shaping spatial disparities in virus spread. Using supervised machine learning and spatial regression modelling we examine how the geography of COVID-19 case rates is influenced by the spatial arrangement of four critical sectors of the built environment during the public health emergency in New York City: health care facilities, mobility networks, food and nutrition and open space. Our models suggest that an analysis of urban health vulnerability is incomplete without the inclusion of critical infrastructure metrics in dense urban geographies. Our findings show that COVID-19 risk at the zip code level is influenced by (1) socio-demographic vulnerability, (2) epidemiological risk, and (3) availability and access to critical infrastructure.

Suggested Citation

  • Gayatri Kawlra & Kazuki Sakamoto, 2023. "Spatialising urban health vulnerability: An analysis of NYC’s critical infrastructure during COVID-19," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1629-1649, July.
  • Handle: RePEc:sae:urbstu:v:60:y:2023:i:9:p:1629-1649
    DOI: 10.1177/00420980211044304
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/00420980211044304
    Download Restriction: no

    File URL: https://libkey.io/10.1177/00420980211044304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean-Paul D. Addie & Michael R. Glass & Jen Nelles, 2020. "Regionalizing the infrastructure turn: a research agenda," Regional Studies, Regional Science, Taylor & Francis Journals, vol. 7(1), pages 10-26, January.
    2. Helen F. Ladd, 1998. "Evidence on Discrimination in Mortgage Lending," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 41-62, Spring.
    3. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    4. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    5. Shima Hamidi & Sadegh Sabouri & Reid Ewing, 2020. "Does Density Aggravate the COVID-19 Pandemic?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 86(4), pages 495-509, October.
    6. Patricia A. McCoy, 2007. "The Home Mortgage Disclosure Act: A Synopsis and Recent Legislative History," Journal of Real Estate Research, American Real Estate Society, vol. 29(4), pages 391-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingling Fan & Scott Orford & Philip Hubbard, 2023. "Urban public health emergencies and the COVID-19 pandemic. Part 2: Infrastructures, urban governance and civil society," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1535-1547, July.
    2. Noel A Manzano Gómez, 2023. "Planning for social distancing: How the legacy of historical epidemics shaped COVID-19's spread in Madrid," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1570-1587, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ploutarchos Tzampoglou & Dimitrios Loukidis, 2020. "Investigation of the Importance of Climatic Factors in COVID-19 Worldwide Intensity," IJERPH, MDPI, vol. 17(21), pages 1-25, October.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    6. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    7. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    8. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    9. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    10. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    11. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    12. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    13. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    14. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    15. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    16. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    17. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    18. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    19. Moharil Janhavi & May Paul & Gaile Daniel P. & Blair Rachael Hageman, 2016. "Belief propagation in genotype-phenotype networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 39-53, March.
    20. Won Hee Lee, 2023. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function," Mathematics, MDPI, vol. 11(5), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:urbstu:v:60:y:2023:i:9:p:1629-1649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.gla.ac.uk/departments/urbanstudiesjournal .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.