IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v46y2017i2p155-188.html
   My bibliography  Save this article

Graphical Models for Quasi-experimental Designs

Author

Listed:
  • Peter M. Steiner
  • Yongnam Kim
  • Courtney E. Hall
  • Dan Su

Abstract

Randomized controlled trials (RCTs) and quasi-experimental designs like regression discontinuity (RD) designs, instrumental variable (IV) designs, and matching and propensity score (PS) designs are frequently used for inferring causal effects. It is well known that the features of these designs facilitate the identification of a causal estimand and, thus, warrant a causal interpretation of the estimated effect. In this article, we discuss and compare the identifying assumptions of quasi-experiments using causal graphs. The increasing complexity of the causal graphs as one switches from an RCT to RD, IV, or PS designs reveals that the assumptions become stronger as the researcher’s control over treatment selection diminishes. We introduce limiting graphs for the RD design and conditional graphs for the latent subgroups of compliers, always takers, and never takers of the IV design, and argue that the PS is a collider that offsets confounding bias via collider bias.

Suggested Citation

  • Peter M. Steiner & Yongnam Kim & Courtney E. Hall & Dan Su, 2017. "Graphical Models for Quasi-experimental Designs," Sociological Methods & Research, , vol. 46(2), pages 155-188, March.
  • Handle: RePEc:sae:somere:v:46:y:2017:i:2:p:155-188
    DOI: 10.1177/0049124115582272
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124115582272
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124115582272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    2. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    3. Markus Frölich & Blaise Melly, 2013. "Identification of Treatment Effects on the Treated with One-Sided Non-Compliance," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 384-414, November.
    4. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    5. Rebecca A. Maynard & Kenneth A. Couch & Coady Wing & Thomas D. Cook, 2013. "Strengthening The Regression Discontinuity Design Using Additional Design Elements: A Within‐Study Comparison," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 32(4), pages 853-877, September.
    6. Peter M. Steiner & Thomas D. Cook & William R. Shadish, 2011. "On the Importance of Reliable Covariate Measurement in Selection Bias Adjustments Using Propensity Scores," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 213-236, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ari Hyytinen & Jaakko Meriläinen & Tuukka Saarimaa & Otto Toivanen & Janne Tukiainen, 2018. "When does regression discontinuity design work? Evidence from random election outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 1019-1051, July.
    2. Matias D. Cattaneo & Luke Keele & Rocío Titiunik & Gonzalo Vazquez-Bare, 2021. "Extrapolating Treatment Effects in Multi-Cutoff Regression Discontinuity Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1941-1952, October.
    3. Hong Kai, 2017. "School Bond Referendum, Capital Expenditure, and Student Achievement," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 17(4), pages 1-26, October.
    4. Kettlewell, Nathan & Siminski, Peter, 2020. "Optimal Model Selection in RDD and Related Settings Using Placebo Zones," IZA Discussion Papers 13639, Institute of Labor Economics (IZA).
    5. Dor Leventer & Daniel Nevo, 2024. "Correcting invalid regression discontinuity designs with multiple time period data," Papers 2408.05847, arXiv.org.
    6. Francesca Carta & Lucia Rizzica, 2015. "Female employment and pre-kindergarten: on the uninteded effects of an Italian reform," Temi di discussione (Economic working papers) 1030, Bank of Italy, Economic Research and International Relations Area.
    7. Dong, Yingying, 2010. "Jumpy or Kinky? Regression Discontinuity without the Discontinuity," MPRA Paper 25461, University Library of Munich, Germany.
    8. Yoichi Arai & Hidehiko Ichimura, 2018. "Simultaneous selection of optimal bandwidths for the sharp regression discontinuity estimator," Quantitative Economics, Econometric Society, vol. 9(1), pages 441-482, March.
    9. Anil Kumar, 2018. "Do Restrictions on Home Equity Extraction Contribute to Lower Mortgage Defaults? Evidence from a Policy Discontinuity at the Texas Border," American Economic Journal: Economic Policy, American Economic Association, vol. 10(1), pages 268-297, February.
    10. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1577-1608.
    11. Arteaga, Irma & Heflin, Colleen & Gable, Sara, 2016. "The impact of aging out of WIC on food security in households with children," Children and Youth Services Review, Elsevier, vol. 69(C), pages 82-96.
    12. Ceren Ertan Yörük & Barış Yörük, 2015. "Alcohol consumption and risky sexual behavior among young adults: evidence from minimum legal drinking age laws," Journal of Population Economics, Springer;European Society for Population Economics, vol. 28(1), pages 133-157, January.
    13. Christopher S. Carpenter & Carlos Dobkin & Casey Warman, 2016. "The Mechanisms of Alcohol Control," Journal of Human Resources, University of Wisconsin Press, vol. 51(2), pages 328-356.
    14. Vergolini, Loris & Zanini, Nadir, 2015. "Away, but not too far from home. The effects of financial aid on university enrolment decisions," Economics of Education Review, Elsevier, vol. 49(C), pages 91-109.
    15. Sebastian Calonico & Matias D Cattaneo & Max H Farrell, 2020. "Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 192-210.
    16. Gaggero, A. & Gil, J. & Jiménez-Rubio, D. & Zucchelli, E., 2021. "Health information and lifestyle behaviours: the impact of a diabetes diagnosis," Health, Econometrics and Data Group (HEDG) Working Papers 21/02, HEDG, c/o Department of Economics, University of York.
    17. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    18. Volker Schöer & Debra Shepherd, 2013. "Compulsory tutorial programmes and performance in undergraduate microeconomics: A regression discontinuity design," Working Papers 27/2013, Stellenbosch University, Department of Economics.
    19. John P. Papay & Richard J. Murnane & John B. Willett, 2011. "How Performance Information Affects Human-Capital Investment Decisions: The Impact of Test-Score Labels on Educational Outcomes," NBER Working Papers 17120, National Bureau of Economic Research, Inc.
    20. Prakash, Nishith & Rockmore, Marc & Uppal, Yogesh, 2019. "Do criminally accused politicians affect economic outcomes? Evidence from India," Journal of Development Economics, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:46:y:2017:i:2:p:155-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.