IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v43y2014i1p137-170.html
   My bibliography  Save this article

Local Dependence in Latent Class Analysis of Rare and Sensitive Events

Author

Listed:
  • Marcus E. Berzofsky
  • Paul P. Biemer
  • William D. Kalsbeek

Abstract

For survey methodologists, latent class analysis (LCA) is a powerful tool for assessing the measurement error in survey questions, evaluating survey methods, and estimating the bias in estimates of population prevalence. LCA can be used when gold standard measurements are not available and applied to essentially any set of indicators that meet certain criteria for identifiability. LCA offers quality inference, provided the key threat to model validity—namely, local dependence—can be appropriately addressed either in the study design or in the model-building process. Three potential causes threaten local independence: bivocality, behaviorally correlated error, and latent heterogeneity. In this article, these threats are examined separately to obtain insights regarding (a) questionnaire designs that reduce local dependence, (b) the effects of local dependence on parameter estimation, and (c) modeling strategies to mitigate these effects in statistical inference. The article focuses primarily on the analysis of rare and sensitivity outcomes and proposes a practical approach for diagnosing and mitigating model failures. The proposed approach is empirically tested using real data from a national survey of inmate sexual abuse where measurement errors are a serious concern. Our findings suggest that the proposed modeling strategy was successful in reducing local dependence bias in the estimates, but its success varied by the quality of the indicators available for analysis. With only three indicators, the biasing effects of local dependence can usually be reduced but not always to acceptable levels.

Suggested Citation

  • Marcus E. Berzofsky & Paul P. Biemer & William D. Kalsbeek, 2014. "Local Dependence in Latent Class Analysis of Rare and Sensitive Events," Sociological Methods & Research, , vol. 43(1), pages 137-170, February.
  • Handle: RePEc:sae:somere:v:43:y:2014:i:1:p:137-170
    DOI: 10.1177/0049124113506407
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124113506407
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124113506407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth S. Garrett & Scott L. Zeger, 2000. "Latent Class Model Diagnosis," Biometrics, The International Biometric Society, vol. 56(4), pages 1055-1067, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beth A. Reboussin & Edward H. Ip & Mark Wolfson, 2008. "Locally dependent latent class models with covariates: an application to under‐age drinking in the USA," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 877-897, October.
    2. Yan Feng & Erpeng Liu & Zhang Yue & Qilin Zhang & Tiankuo Han, 2019. "The Evolutionary Trends of Health Behaviors in Chinese Elderly and the Influencing Factors of These Trends: 2005–2014," IJERPH, MDPI, vol. 16(10), pages 1-17, May.
    3. Korner-Nievergelt, Fränzi & Prévot, Céline & Hahn, Steffen & Jenni, Lukas & Liechti, Felix, 2017. "The integration of mark re-encounter and tracking data to quantify migratory connectivity," Ecological Modelling, Elsevier, vol. 344(C), pages 87-94.
    4. Hwan Chung & Brian P. Flaherty & Joseph L. Schafer, 2006. "Latent class logistic regression: application to marijuana use and attitudes among high school seniors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 723-743, October.
    5. Yun Li & Jeremy M.G. Taylor & Michael R. Elliott, 2010. "A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 523-531, June.
    6. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
    7. Jia-Chiun Pan & Guan-Hua Huang, 2014. "Bayesian Inferences of Latent Class Models with an Unknown Number of Classes," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 621-646, October.
    8. Gioacchino Fazio & Francesca Giambona & Erasmo Vassallo & Elli Vassiliadis, 2018. "A Measure of Trust: The Italian Regional Divide in a Latent Class Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 140(1), pages 209-242, November.
    9. Subtil, Ana & de Oliveira, M. Rosário & Gonçalves, Luzia, 2012. "Conditional dependence diagnostic in the latent class model: A simulation study," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1407-1412.
    10. Kenneth W. Griffin & Lawrence M. Scheier & Bianca Acevedo & Jerry L. Grenard & Gilbert J. Botvin, 2011. "Long-Term Effects of Self-Control on Alcohol Use and Sexual Behavior among Urban Minority Young Women," IJERPH, MDPI, vol. 9(1), pages 1-23, December.
    11. Bei Jiang & Michael R. Elliott & Mary D. Sammel & Naisyin Wang, 2015. "Joint modeling of cross-sectional health outcomes and longitudinal predictors via mixtures of means and variances," Biometrics, The International Biometric Society, vol. 71(2), pages 487-497, June.
    12. Chia-Yi Chiu & Yan Sun & Yanhong Bian, 2018. "Cognitive Diagnosis for Small Educational Programs: The General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 355-375, June.
    13. Brian Neelon & A. James O'Malley & Sharon-Lise T. Normand, 2011. "A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data: Assessing the Impact of Mental Health and Substance Abuse Parity," Biometrics, The International Biometric Society, vol. 67(1), pages 280-289, March.
    14. Jing Huang & Ying Yuan & David Wetter, 2019. "Latent Class Dynamic Mediation Model with Application to Smoking Cessation Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 1-18, March.
    15. Lee, Jung Wun & Chung, Hwan & Jeon, Saebom, 2021. "Bayesian multivariate latent class profile analysis: Exploring the developmental progression of youth depression and substance use," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    16. Formann, Anton K., 2003. "Latent class model diagnostics--a review and some proposals," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 549-559, January.
    17. Beth A. Reboussin & Nicholas S. Ialongo, 2010. "Latent transition models with latent class predictors: attention deficit hyperactivity disorder subtypes and high school marijuana use," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 145-164, January.
    18. Zhenke Wu & Livia Casciola‐Rosen & Antony Rosen & Scott L. Zeger, 2021. "A Bayesian approach to restricted latent class models for scientifically structured clustering of multivariate binary outcomes," Biometrics, The International Biometric Society, vol. 77(4), pages 1431-1444, December.
    19. Nir Billfeld & Moshe Kim, 2019. "Semiparametric correction for endogenous truncation bias with Vox Populi based participation decision," Papers 1902.06286, arXiv.org.
    20. Keevil, Matthew G. & Armstrong, Doug P. & Brooks, Ronald J. & Litzgus, Jacqueline D., 2021. "A model of seasonal variation in somatic growth rates applied to two temperate turtle species," Ecological Modelling, Elsevier, vol. 443(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:43:y:2014:i:1:p:137-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.