IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v79y2014i4p621-646.html
   My bibliography  Save this article

Bayesian Inferences of Latent Class Models with an Unknown Number of Classes

Author

Listed:
  • Jia-Chiun Pan
  • Guan-Hua Huang

Abstract

This paper focuses on analyzing data collected in situations where investigators use multiple discrete indicators as surrogates, for example, a set of questionnaires. A very flexible latent class model is used for analysis. We propose a Bayesian framework to perform the joint estimation of the number of latent classes and model parameters. The proposed approach applies the reversible jump Markov chain Monte Carlo to analyze finite mixtures of multivariate multinomial distributions. In the paper, we also develop a procedure for the unique labeling of the classes. We have carried out a detailed sensitivity analysis for various hyperparameter specifications, which leads us to make standard default recommendations for the choice of priors. The usefulness of the proposed method is demonstrated through computer simulations and a study on subtypes of schizophrenia using the Positive and Negative Syndrome Scale (PANSS). Copyright The Psychometric Society 2014

Suggested Citation

  • Jia-Chiun Pan & Guan-Hua Huang, 2014. "Bayesian Inferences of Latent Class Models with an Unknown Number of Classes," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 621-646, October.
  • Handle: RePEc:spr:psycho:v:79:y:2014:i:4:p:621-646
    DOI: 10.1007/s11336-013-9368-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9368-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9368-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan-Hua Huang & Karen Bandeen-Roche, 2004. "Building an identifiable latent class model with covariate effects on underlying and measured variables," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 5-32, March.
    2. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    3. Bert Green, 1951. "A general solution for the latent class model of latent structure analysis," Psychometrika, Springer;The Psychometric Society, vol. 16(2), pages 151-166, June.
    4. Elizabeth S. Garrett & Scott L. Zeger, 2000. "Latent Class Model Diagnosis," Biometrics, The International Biometric Society, vol. 56(4), pages 1055-1067, December.
    5. Guan-Hua Huang, 2005. "Selecting the number of classes under latent class regression: a factor analytic analogue," Psychometrika, Springer;The Psychometric Society, vol. 70(2), pages 325-345, June.
    6. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    7. Yao, Weixin & Lindsay, Bruce G., 2009. "Bayesian Mixture Labeling by Highest Posterior Density," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 758-767.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Ouyang & Gongjun Xu, 2022. "Identifiability of Latent Class Models with Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1343-1360, December.
    2. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen, 2023. "Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 613-635, June.
    3. Lee, Jung Wun & Chung, Hwan & Jeon, Saebom, 2021. "Bayesian multivariate latent class profile analysis: Exploring the developmental progression of youth depression and substance use," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    4. Kazem Nasserinejad & Joost van Rosmalen & Wim de Kort & Emmanuel Lesaffre, 2017. "Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    5. Francesco Bartolucci & Alessio Farcomeni & Luisa Scaccia, 2017. "A Nonparametric Multidimensional Latent Class IRT Model in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 952-978, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daeyoung Kim & Bruce Lindsay, 2015. "Empirical identifiability in finite mixture models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 745-772, August.
    2. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    3. Xue, Jiacheng & Yao, Weixin, 2022. "Machine Learning Embedded Semiparametric Mixtures of Regressions with Covariate-Varying Mixing Proportions," Econometrics and Statistics, Elsevier, vol. 22(C), pages 159-171.
    4. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    5. Hwan Chung & Brian P. Flaherty & Joseph L. Schafer, 2006. "Latent class logistic regression: application to marijuana use and attitudes among high school seniors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 723-743, October.
    6. Kenneth W. Griffin & Lawrence M. Scheier & Bianca Acevedo & Jerry L. Grenard & Gilbert J. Botvin, 2011. "Long-Term Effects of Self-Control on Alcohol Use and Sexual Behavior among Urban Minority Young Women," IJERPH, MDPI, vol. 9(1), pages 1-23, December.
    7. Chia-Yi Chiu & Yan Sun & Yanhong Bian, 2018. "Cognitive Diagnosis for Small Educational Programs: The General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 355-375, June.
    8. Brian Neelon & A. James O'Malley & Sharon-Lise T. Normand, 2011. "A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data: Assessing the Impact of Mental Health and Substance Abuse Parity," Biometrics, The International Biometric Society, vol. 67(1), pages 280-289, March.
    9. Sijia Xiang & Weixin Yao, 2018. "Semiparametric mixtures of nonparametric regressions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 131-154, February.
    10. Beth A. Reboussin & Nicholas S. Ialongo, 2010. "Latent transition models with latent class predictors: attention deficit hyperactivity disorder subtypes and high school marijuana use," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 145-164, January.
    11. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    12. Xiang, Sijia & Yao, Weixin & Seo, Byungtae, 2016. "Semiparametric mixture: Continuous scale mixture approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 413-425.
    13. Hu, Hao & Wu, Yichao & Yao, Weixin, 2016. "Maximum likelihood estimation of the mixture of log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 137-147.
    14. Benjamin E. Leiby & Mary D. Sammel & Thomas R. Ten Have & Kevin G. Lynch, 2009. "Identification of multivariate responders and non‐responders by using Bayesian growth curve latent class models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 505-524, September.
    15. Jing Ouyang & Gongjun Xu, 2022. "Identifiability of Latent Class Models with Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1343-1360, December.
    16. Chun Yu & Weixin Yao & Guangren Yang, 2020. "A Selective Overview and Comparison of Robust Mixture Regression Estimators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 176-202, April.
    17. James C. Slaughter & Amy H. Herring & John M. Thorp, 2009. "A Bayesian Latent Variable Mixture Model for Longitudinal Fetal Growth," Biometrics, The International Biometric Society, vol. 65(4), pages 1233-1242, December.
    18. Beth A. Reboussin & Edward H. Ip & Mark Wolfson, 2008. "Locally dependent latent class models with covariates: an application to under‐age drinking in the USA," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 877-897, October.
    19. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 141-156.
    20. Bai, Xiuqin & Yao, Weixin & Boyer, John E., 2012. "Robust fitting of mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2347-2359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:79:y:2014:i:4:p:621-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.