IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v29y2001i3p342-373.html
   My bibliography  Save this article

Discrete-Time Hazard Regression Models with Hidden Heterogeneity

Author

Listed:
  • KENNETH C. LAND

    (Duke University)

  • DANIEL S. NAGIN

    (Carnegie Mellon University)

  • PATRICIA L. McCALL

    (North Carolina State University)

Abstract

Previous methodological research has shown that hidden heterogeneity in hazard rate regression models—in the form of systematic differences between sample members in the risk or hazard of making a transition due to unobserved variables not accounted for by the measured covariates—can produce biased parameter estimates and erroneous inferences. However, few empirical applications of hazard regression do more than pay lip service to the complications of hidden heterogeneity. In part, this is due to the relative inaccessibility of the mathematical apparatus of continuous-time hazard regression methodology with flexible nonparametric specifications on the hidden heterogeneity. This article presents new methods for incorporating nonparametric specifications of hidden heterogeneity into hazard regressions by developing discrete-time Poisson rate/complementary log-log hazard regression models with nonparametric hidden heterogeneity that are analogous to the continuous-time models of Heckman and Singer. Maximum-likelihood estimators and associated hypothesis tests are described. An empirical application to data on criminal careers, which illustrates the utility of models that explicitly incorporate hidden heterogeneity, is presented.

Suggested Citation

  • KENNETH C. LAND & DANIEL S. NAGIN & PATRICIA L. McCALL, 2001. "Discrete-Time Hazard Regression Models with Hidden Heterogeneity," Sociological Methods & Research, , vol. 29(3), pages 342-373, February.
  • Handle: RePEc:sae:somere:v:29:y:2001:i:3:p:342-373
    DOI: 10.1177/0049124101029003004
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124101029003004
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124101029003004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    2. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    3. Lei Li & Minja Choe, 1997. "A mixture model for duration data: Analysis of second births in China," Demography, Springer;Population Association of America (PAA), vol. 34(2), pages 189-197, May.
    4. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    5. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    6. Ham, John C & Rea, Samuel A, Jr, 1987. "Unemployment Insurance and Male Unemployment Duration in Canada," Journal of Labor Economics, University of Chicago Press, vol. 5(3), pages 325-353, July.
    7. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    8. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    9. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    10. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    11. Heckman, James J. & Singer, Burton, 1984. "Econometric duration analysis," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 63-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. KENNETH C. LAND & PATRICIA L. McCALL & DANIEL S. NAGIN, 1996. "A Comparison of Poisson, Negative Binomial, and Semiparametric Mixed Poisson Regression Models," Sociological Methods & Research, , vol. 24(4), pages 387-442, May.
    2. Dionne, Georges & Artis, Manuel & Guillen, Montserrat, 1996. "Count data models for a credit scoring system," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 303-325, September.
    3. V. J. Cano Fernandez & G. Guirao Perez & M. C. Rodriguez Donate & M. E. Romero Rodriguez, 2009. "An analysis of count data models for the study of exclusivity in wine consumption," Applied Economics, Taylor & Francis Journals, vol. 41(12), pages 1563-1574.
    4. Gurmu, Shiferaw & Rilstone, Paul & Stern, Steven, 1998. "Semiparametric estimation of count regression models1," Journal of Econometrics, Elsevier, vol. 88(1), pages 123-150, November.
    5. Margarita E. Romero Rodríguez & Enrique Los Arcos & Victor Cano Fernández & Miguel Sánchez Padrón, 2001. "Modelo para datos de recuentro de corte transversal con exceso de ceros. Aplicación a citas patentes," Documentos de trabajo conjunto ULL-ULPGC 2001-05, Facultad de Ciencias Económicas de la ULPGC.
    6. Gouriéroux, Christian & Monfort, Alain, 1997. "Modèles de comptage semi-paramétriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 73(1), pages 525-550, mars-juin.
    7. Dionne, Georges & Gagne, Robert & Gagnon, Francois & Vanasse, Charles, 1997. "Debt, moral hazard and airline safety An empirical evidence," Journal of Econometrics, Elsevier, vol. 79(2), pages 379-402, August.
    8. Michael R. Baye & J. Rupert J. Gatti & Paul Kattuman & John Morgan, 2009. "Clicks, Discontinuities, and Firm Demand Online," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 18(4), pages 935-975, December.
    9. Mello, Marco & Moscelli, Giuseppe, 2022. "Voting, contagion and the trade-off between public health and political rights: Quasi-experimental evidence from the Italian 2020 polls," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 1025-1052.
    10. Meisner, Craig & Wang, Hua & Laplante, Benoit, 2006. "Welfare measurement bias in household and on-site surveying of water-based recreation : an application to Lake Sevan, Armenia," Policy Research Working Paper Series 3932, The World Bank.
    11. Baye, Michael & GATTI, RUPERT J & Kattuman, Paul & Morgan, John, 2004. "Estimating Firm-Level Demand at a Price Comparison Site: Accounting for Shoppers and the Number of Competitors," Competition Policy Center, Working Paper Series qt923692d1, Competition Policy Center, Institute for Business and Economic Research, UC Berkeley.
    12. Dohse, Dirk & Schertler, Andrea, 2003. "Explaining the regional distribution of new economy firms: a count data analysis," Kiel Working Papers 1193, Kiel Institute for the World Economy (IfW Kiel).
    13. Miguel A. Delgado & Thomas J. Kniesner, 1997. "Count Data Models With Variance Of Unknown Form: An Application To A Hedonic Model Of Worker Absenteeism," The Review of Economics and Statistics, MIT Press, vol. 79(1), pages 41-49, February.
    14. Denise Desjardins & Georges Dionne & Yang Lu, 2023. "Hierarchical random‐effects model for the insurance pricing of vehicles belonging to a fleet," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 242-259, March.
    15. Sergi Jiménez‐Martín & José M. Labeaga & Maite Martínez‐Granado, 2002. "Latent class versus two‐part models in the demand for physician services across the European Union," Health Economics, John Wiley & Sons, Ltd., vol. 11(4), pages 301-321, June.
    16. Kevin E. Staub & Rainer Winkelmann, 2013. "Consistent Estimation Of Zero‐Inflated Count Models," Health Economics, John Wiley & Sons, Ltd., vol. 22(6), pages 673-686, June.
    17. Gary King, 1989. "A Seemingly Unrelated Poisson Regression Model," Sociological Methods & Research, , vol. 17(3), pages 235-255, February.
    18. Gourieroux, C. & Jasiak, J., 2004. "Heterogeneous INAR(1) model with application to car insurance," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 177-192, April.
    19. Rainer Winkelmann, 2015. "Counting on count data models," IZA World of Labor, Institute of Labor Economics (IZA), pages 148-148, May.
    20. Crepon, Bruno & Duguet, Emmanuel, 1997. "Research and development, competition and innovation pseudo-maximum likelihood and simulated maximum likelihood methods applied to count data models with heterogeneity," Journal of Econometrics, Elsevier, vol. 79(2), pages 355-378, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:29:y:2001:i:3:p:342-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.