IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v9y2019i1p2158244019832684.html
   My bibliography  Save this article

A Nondiagnostic Assessment for Diagnostic Purposes: Q-Matrix Validation and Item-Based Model Fit Evaluation for the TIMSS 2011 Assessment

Author

Listed:
  • Ragip Terzi
  • Sedat Sen

Abstract

Large-scale assessments are generally designed for summative purposes to compare achievement among participating countries. However, these nondiagnostic assessments have also been adapted in the context of cognitive diagnostic assessment for diagnostic purposes. Following the large amount of investments in these assessments, it would be cost-effective to draw finer-grained inferences about the attribute mastery. Nonetheless, the correctness of attribute specifications in the Q-matrix has not been verified, despite being designed by domain experts. Furthermore, the underlying process of TIMSS (Trends in International Mathematics and Science Study) assessment is unknown as it was not developed for diagnostic purposes. Thus, this study suggests an initial validating attribute specifications in the Q-matrix and thereafter defining specific reduced or saturated models for each item. In doing so, the two analyses were validated across 20 countries that were selected randomly for TIMSS 2011 data. Results show that attribute specifications can differ from expert opinions and the underlying model for each item can vary.

Suggested Citation

  • Ragip Terzi & Sedat Sen, 2019. "A Nondiagnostic Assessment for Diagnostic Purposes: Q-Matrix Validation and Item-Based Model Fit Evaluation for the TIMSS 2011 Assessment," SAGE Open, , vol. 9(1), pages 21582440198, February.
  • Handle: RePEc:sae:sagope:v:9:y:2019:i:1:p:2158244019832684
    DOI: 10.1177/2158244019832684
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2158244019832684
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2158244019832684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    2. Jimmy Torre & Jeffrey Douglas, 2004. "Higher-order latent trait models for cognitive diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 333-353, September.
    3. Ying Cheng, 2009. "When Cognitive Diagnosis Meets Computerized Adaptive Testing: CD-CAT," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 619-632, December.
    4. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    5. Jimmy Torre, 2011. "Erratum to: The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 510-510, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.
    2. Wenyi Wang & Lihong Song & Teng Wang & Peng Gao & Jian Xiong, 2020. "A Note on the Relationship of the Shannon Entropy Procedure and the Jensen–Shannon Divergence in Cognitive Diagnostic Computerized Adaptive Testing," SAGE Open, , vol. 10(1), pages 21582440198, January.
    3. Peida Zhan & Xin Qiao, 2022. "DIAGNOSTIC Classification Analysis of Problem-Solving Competence using Process Data: An Item Expansion Method," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1529-1547, December.
    4. Matthew S. Johnson & Sandip Sinharay, 2020. "The Reliability of the Posterior Probability of Skill Attainment in Diagnostic Classification Models," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 5-31, February.
    5. Qingrong Tan & Yan Cai & Fen Luo & Dongbo Tu, 2023. "Development of a High-Accuracy and Effective Online Calibration Method in CD-CAT Based on Gini Index," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 103-141, February.
    6. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    7. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    8. Jimmy de la Torre & Xue-Lan Qiu & Kevin Carl Santos, 2022. "An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 693-724, June.
    9. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    10. Qianru Liang & Jimmy de la Torre & Nancy Law, 2023. "Latent Transition Cognitive Diagnosis Model With Covariates: A Three-Step Approach," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 690-718, December.
    11. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    12. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    13. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    14. Chia-Yi Chiu & Yuan-Pei Chang, 2021. "Advances in CD-CAT: The General Nonparametric Item Selection Method," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 1039-1057, December.
    15. Chun Wang & Jing Lu, 2021. "Learning Attribute Hierarchies From Data: Two Exploratory Approaches," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 58-84, February.
    16. Xuliang Gao & Wenchao Ma & Daxun Wang & Yan Cai & Dongbo Tu, 2021. "A Class of Cognitive Diagnosis Models for Polytomous Data," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 297-322, June.
    17. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.
    18. Jürgen Heller & Luca Stefanutti & Pasquale Anselmi & Egidio Robusto, 2015. "On the Link between Cognitive Diagnostic Models and Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 995-1019, December.
    19. Mona Tabatabaee-Yazdi, 2020. "Hierarchical Diagnostic Classification Modeling of Reading Comprehension," SAGE Open, , vol. 10(2), pages 21582440209, June.
    20. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:9:y:2019:i:1:p:2158244019832684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.