IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v11y2021i4p21582440211061316.html
   My bibliography  Save this article

Renewable Power Potential from Municipal Solid Waste: A Case Study in Jiangxi, China

Author

Listed:
  • Rafiq Muhammad Aftab
  • Liguo Zhang
  • Chih-Chun Kung

Abstract

Development of renewable energy is important to modern society because climate change induced from fossil use has resulted in severe and possibly irreversible environmental impacts such as sea level rise, desertification, diminished land productivity, and increased possibility of extreme events. Therefore, the utilization of renewable and clean energy not only increases regional energy security but also alleviate the environmental risk. In this study, we employ the lifecycle assessment to examine the electricity generation from the use of municipal solid waste in China, and then investigate the emission reduction from this application. Different supply patterns of the wastes are also compared to make the results more robust. The results show that if recycled wastes are fully utilized, approximately 11,107 GWh can be generated, along with a profit of $1.2 billion from energy sales. In this case, the CO 2 emission will reduce by 9.7 million metric tons. If the food waste is used in compositing and animal feed, the net power generation and emission reduction are about 8,216 GWh and 7.32 million metric tons, respectively. If additional 30% of recycled wastes are assumed to be utilized in their past use, the power generation, profit, and emission reduction will further decrease to 5,750 GWh, $697 million, and 5.12 metric tons, respectively. The results point out that the utilization of recycled wastes can effectively reduce the reliance on fossil fuels, improve energy security, and increase social welfare. Insights of the results and policy implications are also discussed in detail.

Suggested Citation

  • Rafiq Muhammad Aftab & Liguo Zhang & Chih-Chun Kung, 2021. "Renewable Power Potential from Municipal Solid Waste: A Case Study in Jiangxi, China," SAGE Open, , vol. 11(4), pages 21582440211, November.
  • Handle: RePEc:sae:sagope:v:11:y:2021:i:4:p:21582440211061316
    DOI: 10.1177/21582440211061316
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440211061316
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440211061316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Menikpura, S.N.M. & Sang-Arun, Janya & Bengtsson, Magnus, 2016. "Assessment of environmental and economic performance of Waste-to-Energy facilities in Thai cities," Renewable Energy, Elsevier, vol. 86(C), pages 576-584.
    2. Couto, Nuno Dinis & Silva, Valter Bruno & Monteiro, Eliseu & Rouboa, Abel, 2015. "Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices," Energy, Elsevier, vol. 93(P1), pages 864-873.
    3. Kung, Chih-Chun & McCarl, Bruce A., 2020. "The potential role of renewable electricity generation in Taiwan," Energy Policy, Elsevier, vol. 138(C).
    4. Xiong, Jie & Ng, Tsan Sheng Adam & Wang, Shuming, 2016. "An optimization model for economic feasibility analysis and design of decentralized waste-to-energy systems," Energy, Elsevier, vol. 101(C), pages 239-251.
    5. Xin-gang, Zhao & Gui-wu, Jiang & Ang, Li & Yun, Li, 2016. "Technology, cost, a performance of waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 115-130.
    6. Rezaei, Mahdi & Ghobadian, Barat & Samadi, Seyed Hashem & Karimi, Samira, 2018. "Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran," Energy, Elsevier, vol. 152(C), pages 46-56.
    7. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2016. "Factors influencing renewable electricity consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 687-696.
    8. Song, Jinbo & Sun, Yan & Jin, Lulu, 2017. "PESTEL analysis of the development of the waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 276-289.
    9. Ben C. French, 1960. "Some Considerations in Estimating Assembly Cost Functions for Agricultural Processing Operations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 42(4), pages 767-778.
    10. Guo, Xiurui & Liu, Haifeng & Mao, Xianqiang & Jin, Jianjun & Chen, Dongsheng & Cheng, Shuiyuan, 2014. "Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China," Energy Policy, Elsevier, vol. 68(C), pages 340-347.
    11. Tan, Sie Ting & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Wai Shin & Lee, Chew Tin & Yan, Jinyue, 2014. "Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia," Applied Energy, Elsevier, vol. 136(C), pages 797-804.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Chun Kung & Binbo Zheng & Tsung-Ju Lee & Nanping Wu, 2022. "Collections for Economic Growth, Social Development, and Technological Innovation Under Climate Change," SAGE Open, , vol. 12(2), pages 21582440221, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kung, Chih-Chun & McCarl, Bruce A., 2020. "The potential role of renewable electricity generation in Taiwan," Energy Policy, Elsevier, vol. 138(C).
    2. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    3. Agaton, Casper Boongaling & Guno, Charmaine Samala & Villanueva, Resy Ordona & Villanueva, Riza Ordona, 2020. "Economic analysis of waste-to-energy investment in the Philippines: A real options approach," Applied Energy, Elsevier, vol. 275(C).
    4. Wang, Yuan & Geng, Shengnan & Zhao, Peng & Du, Huibin & He, Yu & Crittenden, John, 2016. "Cost–benefit analysis of GHG emission reduction in waste to energy projects of China under clean development mechanism," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 90-95.
    5. Fei, Fan & Wen, Zongguo & De Clercq, Djavan, 2019. "Spatio-temporal estimation of landfill gas energy potential: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 217-226.
    6. Herlander Mata-Lima & Deborah Wollmann Silva & Deborah Cristina Nardi & Samanta Andrize Klering & Thays Car Feliciano de Oliveira & Fernando Morgado-Dias, 2021. "Waste-to-Energy: An Opportunity to Increase Renewable Energy Share and Reduce Ecological Footprint in Small Island Developing States (SIDS)," Energies, MDPI, vol. 14(22), pages 1-20, November.
    7. Zhao, Rui & Xi, Beidou & Liu, Yiyun & Su, Jing & Liu, Silin, 2017. "Economic potential of leachate evaporation by using landfill gas: A system dynamics approach," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 74-84.
    8. Samadi, Seyed Hashem & Ghobadian, Barat & Nosrati, Mohsen, 2020. "Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran," Renewable Energy, Elsevier, vol. 149(C), pages 1077-1091.
    9. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    10. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    11. Amine Lahiani & Sinha Avik & Muhammad Shahbaz, 2018. "Renewable energy consumption, income, CO2 emissions and oil prices in G7 countries: The importance of asymmetries," Post-Print hal-03677233, HAL.
    12. Xu, Guangyue & Yang, Hualiu & Schwarz, Peter, 2022. "A strengthened relationship between electricity and economic growth in China: An empirical study with a structural equation model," Energy, Elsevier, vol. 241(C).
    13. Kamile Petrauskiene & Jolanta Dvarioniene & Giedrius Kaveckis & Daina Kliaugaite & Julie Chenadec & Leonie Hehn & Berta Pérez & Claudio Bordi & Giorgio Scavino & Andrea Vignoli & Michael Erman, 2020. "Situation Analysis of Policies for Electric Mobility Development: Experience from Five European Regions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    14. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    15. Zheng, Shuhong & Yang, Juan & Yu, Shiwei, 2021. "How renewable energy technological innovation promotes renewable power generation: Evidence from China's provincial panel data," Renewable Energy, Elsevier, vol. 177(C), pages 1394-1407.
    16. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    17. Giat, Yahel & Manes, Eran, 2023. "Firm response to ethically motivated boycotts," European Journal of Operational Research, Elsevier, vol. 305(1), pages 300-311.
    18. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    19. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    20. Ben Cheikh, Nidhaleddine & Ben Zaied, Younes & Nguyen, Duc Khuong, 2023. "Understanding energy poverty drivers in Europe," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:11:y:2021:i:4:p:21582440211061316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.