IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v103y2019icp217-226.html
   My bibliography  Save this article

Spatio-temporal estimation of landfill gas energy potential: A case study in China

Author

Listed:
  • Fei, Fan
  • Wen, Zongguo
  • De Clercq, Djavan

Abstract

Municipal solid waste (MSW) landfills are among the largest anthropogenic sources of methane. However, there are also potential sources of landfill gas (LFG), which can be used to produce energy products, meaning that the recycling of LFG has gained global attention. Scientific evaluation of spatio-temporal LFG recycling potential is necessary to accelerate the promotion of LFG utilization. However, for a big country with uneven regional development level like China, the amount of LFG that can be recycled and utilized is difficult to determine, and there has been limited research that considers variation in regional characteristics, landfill sites and technologies. Therefore, this research first used sub-regional parameter sets that embodied the MSW characteristics of different regions to calculate LFG generation in China from 1990 to 2020. Next, this research estimated the LFG recovery potential for different regions in 2020 based on analysis of LFG collection and utilization technology, including technical parameters and application in different landfill sizes. The results showed that LFG generation in China will reach peak value around 2019 (3.49 billion N m3 of methane), and decrease quickly after that. The quantity of LFG with the utilization condition in 2020 will be 3.30 billion N m3, which could produce 7.39 billion kW h of electricity or 1.70 billion N m3 of bio natural gas. This could substitute 85.5% of electricity consumption or 25.3% of natural gas consumption in the transportation sector in 2014 (8.63 billion kW h and 6.74 billion N m3 respectively). Moreover, the findings show that the peak in LFG generation and a massive closure period of Chinese landfills will coincide. This will provide an opportunity to promote LFG utilization during the closed field management of landfills. Overall, LFG recycling presents a strong opportunity, and is in urgent need of promotion policies.

Suggested Citation

  • Fei, Fan & Wen, Zongguo & De Clercq, Djavan, 2019. "Spatio-temporal estimation of landfill gas energy potential: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 217-226.
  • Handle: RePEc:eee:rensus:v:103:y:2019:i:c:p:217-226
    DOI: 10.1016/j.rser.2018.12.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211830830X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.12.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mambeli Barros, Regina & Tiago Filho, Geraldo Lúcio & da Silva, Tiago Rodrigo, 2014. "The electric energy potential of landfill biogas in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 150-164.
    2. Menikpura, S.N.M. & Sang-Arun, Janya & Bengtsson, Magnus, 2016. "Assessment of environmental and economic performance of Waste-to-Energy facilities in Thai cities," Renewable Energy, Elsevier, vol. 86(C), pages 576-584.
    3. Penteado, Roger & Cavalli, Massimo & Magnano, Enrico & Chiampo, Fulvia, 2012. "Application of the IPCC model to a Brazilian landfill: First results," Energy Policy, Elsevier, vol. 42(C), pages 551-556.
    4. Zamorano, Montserrat & Ignacio Pérez Pérez, Jorge & Aguilar Pavés, Ignacio & Ramos Ridao, Ángel, 2007. "Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 909-922, June.
    5. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    6. Zheng, Lijun & Song, Jiancheng & Li, Chuanyang & Gao, Yunguang & Geng, Pulong & Qu, Binni & Lin, Linyan, 2014. "Preferential policies promote municipal solid waste (MSW) to energy in China: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 135-148.
    7. Noor, Zainura Zainon & Yusuf, Rafiu Olasunkanmi & Abba, Ahmad Halilu & Abu Hassan, Mohd Ariffin & Mohd Din, Mohd Fadhil, 2013. "An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 378-384.
    8. Zhou, Hui & Meng, AiHong & Long, YanQiu & Li, QingHai & Zhang, YanGuo, 2014. "An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 107-122.
    9. Tsai, W.T., 2007. "Bioenergy from landfill gas (LFG) in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 331-344, February.
    10. Couth, R. & Trois, C. & Parkin, J. & Strachan, L.J. & Gilder, A. & Wright, M., 2011. "Delivery and viability of landfill gas CDM projects in Africa--A South African experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 392-403, January.
    11. Tan, Sie Ting & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Wai Shin & Lee, Chew Tin & Yan, Jinyue, 2014. "Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia," Applied Energy, Elsevier, vol. 136(C), pages 797-804.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cudjoe, Dan & Han, Myat Su & Chen, Weiming, 2021. "Power generation from municipal solid waste landfilled in the Beijing-Tianjin-Hebei region," Energy, Elsevier, vol. 217(C).
    2. Brigagão, George Victor & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F. & Mikulčić, Hrvoje & Duić, Neven, 2021. "A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, K.M. Nazmul, 2018. "Municipal solid waste to energy generation: An approach for enhancing climate co-benefits in the urban areas of Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2472-2486.
    2. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    3. Xin-gang, Zhao & Gui-wu, Jiang & Ang, Li & Yun, Li, 2016. "Technology, cost, a performance of waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 115-130.
    4. Peng, Nana & Liu, Zhengang & Liu, Tingting & Gai, Chao, 2016. "Emissions of polycyclic aromatic hydrocarbons (PAHs) during hydrothermally treated municipal solid waste combustion for energy generation," Applied Energy, Elsevier, vol. 184(C), pages 396-403.
    5. Tozlu, Alperen & Özahi, Emrah & Abuşoğlu, Ayşegül, 2016. "Waste to energy technologies for municipal solid waste management in Gaziantep," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 809-815.
    6. Rafiq Muhammad Aftab & Liguo Zhang & Chih-Chun Kung, 2021. "Renewable Power Potential from Municipal Solid Waste: A Case Study in Jiangxi, China," SAGE Open, , vol. 11(4), pages 21582440211, November.
    7. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    8. Barampouti, E.M. & Mai, S. & Malamis, D. & Moustakas, K. & Loizidou, M., 2019. "Liquid biofuels from the organic fraction of municipal solid waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 298-314.
    9. Aguilar-Virgen, Quetzalli & Taboada-González, Paul & Ojeda-Benítez, Sara & Cruz-Sotelo, Samantha, 2014. "Power generation with biogas from municipal solid waste: Prediction of gas generation with in situ parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 412-419.
    10. repec:zib:zjmerd:3jmerd2018-97-101 is not listed on IDEAS
    11. De Clercq, Djavan & Wen, Zongguo & Gottfried, Oliver & Schmidt, Franziska & Fei, Fan, 2017. "A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 204-221.
    12. Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    13. Oh, Tick Hui & Hasanuzzaman, Md & Selvaraj, Jeyraj & Teo, Siew Chein & Chua, Shing Chyi, 2018. "Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth – An update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3021-3031.
    14. Altaf Hussain Kanhar & Shaoqing Chen & Fei Wang, 2020. "Incineration Fly Ash and Its Treatment to Possible Utilization: A Review," Energies, MDPI, vol. 13(24), pages 1-35, December.
    15. Ruoso, Ana Cristina & Dalla Nora, Macklini & Siluk, Julio Cezar Mairesse & Ribeiro, José Luis Duarte, 2022. "The impact of landfill operation factors on improving biogas generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. AM. Faizal & A. Amirah & Y. H. Tan, 2018. "Energy, Economic And Environmental Impact Of Waste-To-Energy In Malaysia," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(3), pages 97-101, September.
    17. Zuberi, M. Jibran S. & Ali, Shazia F., 2015. "Greenhouse effect reduction by recovering energy from waste landfills in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 117-131.
    18. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Santiago Alzate & Bonie Restrepo-Cuestas & Álvaro Jaramillo-Duque, 2019. "Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios," Resources, MDPI, vol. 8(1), pages 1-16, March.
    20. Dega, Frank Blondel & Chamoumi, Mostafa & Braidy, Nadi & Abatzoglou, Nicolas, 2019. "Autothermal dry reforming of methane with a nickel spinellized catalyst prepared from a negative value metallurgical residue," Renewable Energy, Elsevier, vol. 138(C), pages 1239-1249.
    21. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:103:y:2019:i:c:p:217-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.