IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i5p957-971.html
   My bibliography  Save this article

A framework based on Natural Language Processing and Machine Learning for the classification of the severity of road accidents from reports

Author

Listed:
  • Dario Valcamonico
  • Piero Baraldi
  • Francesco Amigoni
  • Enrico Zio

Abstract

Road safety analysis is typically performed by domain experts on the basis of the information contained in accident reports. The main challenges are the difficulty of considering a large number of reports in textual form and the subjectivity of the expert judgments contained in reports. This work develops a framework based on the combination of Natural Language Processing (NLP) and Machine Learning (ML) for the automatic classification of accidents with the final aim of assisting experts in performing road safety analyses. Two different models for the representation of the textual reports (Hierarchical Dirichlet Processes (HDPs) and Doc2vec) and three ML-based classifiers (Artificial Neural Networks (ANNs), Decision Trees (DTs) and Random Forests (RFs)) are compared. The framework is applied to a repository of road accident reports provided by the US National Highway Traffic Safety Administration. The best trade-off between accuracy of the classification and explainability of the obtained results is achieved by combining HDP topic modeling and RF classification.

Suggested Citation

  • Dario Valcamonico & Piero Baraldi & Francesco Amigoni & Enrico Zio, 2024. "A framework based on Natural Language Processing and Machine Learning for the classification of the severity of road accidents from reports," Journal of Risk and Reliability, , vol. 238(5), pages 957-971, October.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:5:p:957-971
    DOI: 10.1177/1748006X221140196
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221140196
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221140196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:5:p:957-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.