IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i3d10.1007_s11009-023-10046-x.html
   My bibliography  Save this article

Construction of Jointly Distributed Random Samples Drawn from the Beta Two-Parameter Process

Author

Listed:
  • Hassan Akell

    (Faculty of Mathematics & Statistics)

  • Farkhondeh-Alsadat Sajadi

    (Faculty of Mathematics & Statistics)

  • Iraj Kazemi

    (Faculty of Mathematics & Statistics)

Abstract

Several extensions of the familiar Dirichlet process have been widely investigated to nonparametric Bayesian model fittings parallel with appealing subsequent studies on their particular properties. This paper presents an explicit form for the joint distribution of drawn samples from the beta two-parameter process using an extension of stick-breaking construction. In particular, we evaluate the joint distribution of a random sequence for a specific process case and compare it with the Blackwell-MacQueen process. We obtain moments of the beta two-parameter process and present a formula for the number of distinct values in the sample. We establish the precision ratio and explore its effect on this number.

Suggested Citation

  • Hassan Akell & Farkhondeh-Alsadat Sajadi & Iraj Kazemi, 2023. "Construction of Jointly Distributed Random Samples Drawn from the Beta Two-Parameter Process," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-12, September.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:3:d:10.1007_s11009-023-10046-x
    DOI: 10.1007/s11009-023-10046-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-10046-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-10046-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felix Heinzl & Ludwig Fahrmeir & Thomas Kneib, 2012. "Additive mixed models with Dirichlet process mixture and P-spline priors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 47-68, January.
    2. Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    3. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    4. Antonio Lijoi & Ramsés Mena & Igor Prünster, 2005. "Bayesian Nonparametric Analysis for a Generalized Dirichlet Process Prior," Statistical Inference for Stochastic Processes, Springer, vol. 8(3), pages 283-309, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michelle Dietzen & Haoran Zhai & Olivia Lucas & Oriol Pich & Christopher Barrington & Wei-Ting Lu & Sophia Ward & Yanping Guo & Robert E. Hynds & Simone Zaccaria & Charles Swanton & Nicholas McGranaha, 2024. "Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    4. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    5. Jeffrey L. Furman & Florenta Teodoridis, 2020. "Automation, Research Technology, and Researchers’ Trajectories: Evidence from Computer Science and Electrical Engineering," Organization Science, INFORMS, vol. 31(2), pages 330-354, March.
    6. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    7. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    8. Shu-Ping Shi & Yong Song, 2012. "Identifying Speculative Bubbles with an Infinite Hidden Markov Model," Working Paper series 26_12, Rimini Centre for Economic Analysis.
    9. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    10. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    11. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    12. Elisabeth Waldmann & Thomas Kneib & Yu Ryan Yu & Stefan Lang, 2012. "Bayesian semiparametric additive quantile regression," Working Papers 2012-06, Faculty of Economics and Statistics, Universität Innsbruck.
    13. Thomas R. W. Oliver & Lia Chappell & Rashesh Sanghvi & Lauren Deighton & Naser Ansari-Pour & Stefan C. Dentro & Matthew D. Young & Tim H. H. Coorens & Hyunchul Jung & Tim Butler & Matthew D. C. Nevill, 2022. "Clonal diversification and histogenesis of malignant germ cell tumours," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Lennart Bondesson, 2015. "A Class of Probability Distributions that is Closed with Respect to Addition as Well as Multiplication of Independent Random Variables," Journal of Theoretical Probability, Springer, vol. 28(3), pages 1063-1081, September.
    15. Gustaf Bellstam & Sanjai Bhagat & J. Anthony Cookson, 2021. "A Text-Based Analysis of Corporate Innovation," Management Science, INFORMS, vol. 67(7), pages 4004-4031, July.
    16. Michael L. Pennell & David B. Dunson, 2008. "Nonparametric Bayes Testing of Changes in a Response Distribution with an Ordinal Predictor," Biometrics, The International Biometric Society, vol. 64(2), pages 413-423, June.
    17. Juan Armando Torres Munguía, 2018. "What is behind homicide gender gaps in Mexico? A spatial semiparametric approach," Ibero America Institute for Econ. Research (IAI) Discussion Papers 236, Ibero-America Institute for Economic Research.
    18. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    19. Hongxia Yang & Aurelie Lozano, 2015. "Multi-relational learning via hierarchical nonparametric Bayesian collective matrix factorization," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1133-1147, May.
    20. J. Griffin, 2011. "Bayesian clustering of distributions in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(3), pages 275-283, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:3:d:10.1007_s11009-023-10046-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.