IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005131.html
   My bibliography  Save this article

A novel importance measure considering multi-constraints for RAP optimization of 1-out-of-n subsystems with mixed redundancy strategy

Author

Listed:
  • Wang, Dan
  • Liu, Mingli
  • Yang, Haoxiang
  • Si, Shubin

Abstract

Intelligent optimization algorithms are the mainstream approach to solving redundancy allocation problems (RAP) with challenging features. Since importance measures (IM) can identify critical components, the combination of IM-based local optimization and intelligent algorithms has wide applications in various optimization problems; however, it is less studied in RAP. Existing IMs also failed to address both the objective function and multiple constraints like cost and weight; this may result in an imprecise identification of critical subsystems for RAP optimization. This paper considers a RAP with a mixed strategy, i.e., active and standby strategies can be applied to a subsystem simultaneously. Two novel IMs are proposed based on a Lagrangian function: cost-centric RAP-based importance (CRI) and weight-centric RAP-based importance (WRI). CRI (WRI) reveals the comprehensive effect of cost (weight) consumption on the system reliability and other resources. A local optimization algorithm guided alternately by CRI and WRI is presented to adjust the redundancy level of subsystems; then, this algorithm is introduced into a genetic algorithm (GA) to determine the component types and redundancy level of all subsystems. Compared with other algorithms and previous studies, the superiority of the proposed hybrid GA is demonstrated via numerical experiments and a well-known benchmark example.

Suggested Citation

  • Wang, Dan & Liu, Mingli & Yang, Haoxiang & Si, Shubin, 2024. "A novel importance measure considering multi-constraints for RAP optimization of 1-out-of-n subsystems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005131
    DOI: 10.1016/j.ress.2024.110441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.