A novel structural safety assessment method of large liquid tank based on the belief rule base and finite element method
Author
Abstract
Suggested Citation
DOI: 10.1177/1748006X211021690
Download full text from publisher
References listed on IDEAS
- Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
- Hänninen, Maria & Kujala, Pentti, 2012. "Influences of variables on ship collision probability in a Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 27-40.
- Feng, Zhichao & Zhou, Zhijie & Hu, Changhua & Ban, Xiaojun & Hu, Guanyu, 2020. "A safety assessment model based on belief rule base with new optimization method," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Olivar, Oscar J. RamÃrez & Mayorga, Santiago Zuluaga & Giraldo, Felipe Muñoz & Sánchez-Silva, Mauricio & Pinelli, Jean-Paul & Salzano, Ernesto, 2020. "The effects of extreme winds on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Kong, Guilan & Xu, Dong-Ling & Body, Richard & Yang, Jian-Bo & Mackway-Jones, Kevin & Carley, Simon, 2012. "A belief rule-based decision support system for clinical risk assessment of cardiac chest pain," European Journal of Operational Research, Elsevier, vol. 219(3), pages 564-573.
- Vema, Vamsikrishna & Sudheer, K.P. & Chaubey, I., 2019. "Fuzzy inference system for site suitability evaluation of water harvesting structures in rainfed regions," Agricultural Water Management, Elsevier, vol. 218(C), pages 82-93.
- Bernier, Carl & Padgett, Jamie E., 2019. "Fragility and risk assessment of aboveground storage tanks subjected to concurrent surge, wave, and wind loads," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Hai-Long Zhu & Shan-Shan Liu & Yuan-Yuan Qu & Xiao-Xia Han & Wei He & You Cao, 2022. "A new risk assessment method based on belief rule base and fault tree analysis," Journal of Risk and Reliability, , vol. 236(3), pages 420-438, June.
- Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Marroni, Giulia & Casini, Leonardo & Bartolucci, Andrea & Kuipers, Sanneke & Casson Moreno, Valeria & Landucci, Gabriele, 2024. "Development of fragility models for process equipment affected by physical security attacks," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Khakzad, Nima & Cozzani, Valerio, 2020. "Special issue: Quantitative assessment and risk management of Natech accidents," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
- Al-Ebbini, Lina & Oztekin, Asil & Chen, Yao, 2016. "FLAS: Fuzzy lung allocation system for US-based transplantations," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1051-1065.
- Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
- Guizhen Zhang & Vinh V. Thai & Adrian Wing‐Keung Law & Kum Fai Yuen & Hui Shan Loh & Qingji Zhou, 2020. "Quantitative Risk Assessment of Seafarers’ Nonfatal Injuries Due to Occupational Accidents Based on Bayesian Network Modeling," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 8-23, January.
- Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
- Weiliang Qiao & Yu Liu & Xiaoxue Ma & Yang Liu, 2020. "Human Factors Analysis for Maritime Accidents Based on a Dynamic Fuzzy Bayesian Network," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 957-980, May.
- Hu, Xiaonong & Fang, Genshen & Yang, Jiayu & Zhao, Lin & Ge, Yaojun, 2023. "Simplified models for uncertainty quantification of extreme events using Monte Carlo technique," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Çakır, Erkan & Fışkın, Remzi & Sevgili, Coşkan, 2021. "Investigation of tugboat accidents severity: An application of association rule mining algorithms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Yang, Zaili & Yang, Zhisen & Smith, John & Robert, Bostock Adam Peter, 2021. "Risk analysis of bicycle accidents: A Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Szlapczynski, Rafal & Szlapczynska, Joanna, 2021. "A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2021. "An Integrated Data and Knowledge Model Addressing Aleatory and Epistemic Uncertainty for Oil Condition Monitoring," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Tao Zeng & Guohua Chen & Yunfeng Yang & Genserik Reniers & Yixin Zhao & Xia Liu, 2020. "A Systematic Literature Review on Safety Research Related to Chemical Industrial Parks," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
More about this item
Keywords
Structural safety assessment; belief rule base; finite element method; large liquid tank;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:236:y:2022:i:3:p:458-476. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.