IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v235y2021i3p374-390.html
   My bibliography  Save this article

A failure prediction model for corrosion in gas transmission pipelines

Author

Listed:
  • Kimiya Zakikhani
  • Fuzhan Nasiri
  • Tarek Zayed

Abstract

Transmission pipelines comprise a major part of a gas network, conveying natural gas within jurisdictions, and across international boundaries. In the United States, more than 10,000 failure incidents have been reported in gas transmission pipelines in a 20-year period from 1996 to 2016 leading to a cumulative property damage of more than $748 million. Among different failure sources, corrosion is ranked as the most frequent one, corresponding to approximately a quarter of total failures. Though in-line inspection is counted as the most frequently applied corrosion monitoring technique for oil and gas pipelines, it imposes considerable costs due to the necessity of implementing frequent inspections using smart devices. For this reason, several failure prediction models have been developed to estimate the corrosion failure. However, the majorities of these prediction models rely solely on experimental tests or limited historical records which undermine the extent of their applicability and ignore pipeline environmental and geographical circumstances. The objective of this research is to develop failure prediction models for external corrosion in underground gas transmission pipelines by considering both conventional and environmental/geographical variables. For this objective, multiple regression analysis was performed on the accessible historical data reported for gas transmission pipelines. Two main climate regions of Great Plains and South East in the US were selected, and their corresponding failure prediction models were developed. Such development was based on a step by step procedure analyzing different scenarios. Considering diagnostic measures, null hypothesis and residual analysis, scenario 3 was selected as satisfactory. The validation tests of the developed models present a root mean square error (RMSE) of 0.04 and 0.07 and R-Sq of 0.93 and 0.75, respectively. The results of this research can be applied in maintenance planning of gas transmission pipeline to estimate the critical time in which a pipeline may encounter external corrosion failure, and to accordingly schedule the maintenance activities.

Suggested Citation

  • Kimiya Zakikhani & Fuzhan Nasiri & Tarek Zayed, 2021. "A failure prediction model for corrosion in gas transmission pipelines," Journal of Risk and Reliability, , vol. 235(3), pages 374-390, June.
  • Handle: RePEc:sae:risrel:v:235:y:2021:i:3:p:374-390
    DOI: 10.1177/1748006X20976802
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X20976802
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X20976802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dundulis, Gintautas & ŽutautaitÄ—, Inga & Janulionis, Remigijus & UÅ¡puras, Eugenijus & RimkeviÄ ius, Sigitas & Eid, Mohamed, 2016. "Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 195-202.
    2. Kexi Liao & Quanke Yao & Xia Wu & Wenlong Jia, 2012. "A Numerical Corrosion Rate Prediction Method for Direct Assessment of Wet Gas Gathering Pipelines Internal Corrosion," Energies, MDPI, vol. 5(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Li, He & Deng, Zhi-Ming & Golilarz, Noorbakhsh Amiri & Guedes Soares, C., 2021. "Reliability analysis of the main drive system of a CNC machine tool including early failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Xiao, Rui & Zayed, Tarek & Meguid, Mohamed A. & Sushama, Laxmi, 2024. "Improving failure modeling for gas transmission pipelines: A survival analysis and machine learning integrated approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Zhang, Y. & Weng, W.G., 2020. "Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. María E. Arce & Ángeles Saavedra & José L. Míguez & Enrique Granada & Antón Cacabelos, 2013. "Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor," Energies, MDPI, vol. 6(11), pages 1-17, November.
    7. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    9. Å arÅ«nienÄ—, Inga & MartiÅ¡auskas, Linas & KrikÅ¡tolaitis, RiÄ ardas & Augutis, Juozas & Setola, Roberto, 2024. "Risk assessment of critical infrastructures: A methodology based on criticality of infrastructure elements," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Li, Xinhong & Jia, Ruichao & Zhang, Renren & Yang, Shangyu & Chen, Guoming, 2022. "A KPCA-BRANN based data-driven approach to model corrosion degradation of subsea oil pipelines," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Miao, Xingyuan & Zhao, Hong, 2024. "Corroded submarine pipeline degradation prediction based on theory-guided IMOSOA-EL model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Zhou, Xingyuan & van Gelder, P.H.A.J.M. & Liang, Yongtu & Zhang, Haoran, 2020. "An integrated methodology for the supply reliability analysis of multi-product pipeline systems under pumps failure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Alexey Dengaev & Vladimir Verbitsky & Olga Eremenko & Anna Novikova & Andrey Getalov & Boris Sargin, 2022. "Water-in-Oil Emulsions Separation Using a Controlled Multi-Frequency Acoustic Field at an Operating Facility," Energies, MDPI, vol. 15(17), pages 1-16, August.
    14. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    15. Yu, Weichao & Wen, Kai & Min, Yuan & He, Lei & Huang, Weihe & Gong, Jing, 2018. "A methodology to quantify the gas supply capacity of natural gas transmission pipeline system using reliability theory," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 128-141.
    16. Balali, Amirhossein & Valipour, Alireza & Edwards, Rodger & Moehler, Robert, 2021. "Ranking effective risks on human resources threats in natural gas supply projects using ANP-COPRAS method: Case study of Shiraz," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    17. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:235:y:2021:i:3:p:374-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.