IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v230y2016i1p93-100.html
   My bibliography  Save this article

A preventive replacement policy based on system critical condition

Author

Listed:
  • Won Young Yun
  • Alfonsus Julanto Endharta

Abstract

The article considers a linear consecutive- k -out-of- n : F system and a linear connected-( r , s )-out-of-( m , n ): F system. It is assumed that the components are identical and the failure times of components follow an exponential distribution. The system is continuously monitored and the component failure can be known at any time. A preventive maintenance policy is proposed, and it is based on the system critical condition which is related to the number of working components in the minimal cut sets of the system. If there is at least one minimal cut set which consists of only one working component, the system is maintained preventively after a certain time interval and the failed components are replaced with the new ones to prevent the system failures. The expected cost rate is used as an optimization criterion. The expected cost rate is estimated by simulation and numerical examples are studied. The numerical analyses are exploratory and not generalizable.

Suggested Citation

  • Won Young Yun & Alfonsus Julanto Endharta, 2016. "A preventive replacement policy based on system critical condition," Journal of Risk and Reliability, , vol. 230(1), pages 93-100, February.
  • Handle: RePEc:sae:risrel:v:230:y:2016:i:1:p:93-100
    DOI: 10.1177/1748006X15588249
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X15588249
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X15588249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    2. Yun, Won-Young & Kim, Gui-Rae & Yamamoto, Hisashi, 2007. "Economic design of a circular consecutive-k-out-of-n:F system with (k-1)-step Markov dependence," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 464-478.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caiyun Niu & Xiaolin Liang & Bingfeng Ge & Xue Tian & Yingwu Chen, 2016. "Optimal replacement policy for a repairable system with deterioration based on a renewal-geometric process," Annals of Operations Research, Springer, vol. 244(1), pages 49-66, September.
    2. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
    4. Chattopadhyay, Gopinath & Rahman, Anisur, 2008. "Development of lifetime warranty policies and models for estimating costs," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 522-529.
    5. Junyuan Wang & Jimin Ye & Qianru Ma & Pengfei Xie, 2022. "An extended geometric process repairable model with its repairman having vacation," Annals of Operations Research, Springer, vol. 311(1), pages 401-415, April.
    6. Sheu, Shey-Huei, 1998. "A generalized age and block replacement of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 108(2), pages 345-362, July.
    7. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    8. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    9. Navarro, Jorge & Arriaza, Antonio & Suárez-Llorens, Alfonso, 2019. "Minimal repair of failed components in coherent systems," European Journal of Operational Research, Elsevier, vol. 279(3), pages 951-964.
    10. Amini, Morteza & Balakrishnan, N., 2013. "Nonparametric meta-analysis of independent samples of records," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 70-81.
    11. Hoskins, R. P. & Brint, A. T. & Strbac, G., 1999. "A structured approach to Asset Management within the electricity industry," Utilities Policy, Elsevier, vol. 7(4), pages 221-232, February.
    12. Ji Hwan Cha & Maxim Finkelstein, 2020. "Is perfect repair always perfect?," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 90-104, March.
    13. Belyi, Dmitriy & Popova, Elmira & Morton, David P. & Damien, Paul, 2017. "Bayesian failure-rate modeling and preventive maintenance optimization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1085-1093.
    14. Faccio, M. & Persona, A. & Sgarbossa, F. & Zanin, G., 2014. "Industrial maintenance policy development: A quantitative framework," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 85-93.
    15. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    16. Van der Auweraer, Sarah & Boute, Robert, 2019. "Forecasting spare part demand using service maintenance information," International Journal of Production Economics, Elsevier, vol. 213(C), pages 138-149.
    17. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    18. Jiawen Hu & Zuhua Jiang & Hong Wang, 2016. "Preventive maintenance for a single-machine system under variable operational conditions," Journal of Risk and Reliability, , vol. 230(4), pages 391-404, August.
    19. Sheu, Shey-Huei, 1999. "Extended optimal replacement model for deteriorating systems," European Journal of Operational Research, Elsevier, vol. 112(3), pages 503-516, February.
    20. Young Yun, Won & Nakagawa, Toshio, 2010. "Replacement and inspection policies for products with random life cycle," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 161-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:230:y:2016:i:1:p:93-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.