IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v173y2018icp23-33.html
   My bibliography  Save this article

Simplification of inclusion–exclusion on intersections of unions with application to network systems reliability

Author

Listed:
  • Schäfer, Lukas
  • García, Sergio
  • Srithammavanh, Vassili

Abstract

Reliability of safety-critical systems is a paramount issue in system engineering because in most practical situations the reliability of a non series-parallel network system has to be calculated. Some methods for calculating reliability use the probability principle of inclusion–exclusion. When dealing with complex networks, this leads to very long mathematical expressions which are usually computationally very expensive to calculate. In this paper, we provide a new expression to simplify the probability principle of inclusion–exclusion formula for intersections of unions which appear when calculating reliability on non series-parallel network systems. This new expression exploits the presence of many repeated events and has many fewer terms, which significantly reduces the computational cost. We also show that the general form of the probability principle of inclusion–exclusion formula has a double exponential complexity, whereas the simplified form has only an exponential complexity with a linear exponent. Finally, we compare its computational efficiency against the sum of disjoint products method KDH88 for a simple artificial example and for a door management system, which is a safety-critical system in aircraft engineering.

Suggested Citation

  • Schäfer, Lukas & García, Sergio & Srithammavanh, Vassili, 2018. "Simplification of inclusion–exclusion on intersections of unions with application to network systems reliability," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 23-33.
  • Handle: RePEc:eee:reensy:v:173:y:2018:i:c:p:23-33
    DOI: 10.1016/j.ress.2018.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017306154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mo, Yuchang & Liu, Yu & Cui, Lirong, 2018. "Performability analysis of multi-state series-parallel systems with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 48-56.
    2. Yeh, Wei-Chang, 2007. "An improved sum-of-disjoint-products technique for the symbolic network reliability analysis with known minimal paths," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 260-268.
    3. Ning-Cong Xiao & Libin Duan & Zhangchun Tang, 2017. "Surrogate-model-based reliability method for structural systems with dependent truncated random variables," Journal of Risk and Reliability, , vol. 231(3), pages 265-274, June.
    4. Levitin, Gregory, 2007. "Block diagram method for analyzing multi-state systems with uncovered failures," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 727-734.
    5. Esha Datta & Neeraj Kumar Goyal, 2017. "Sum of disjoint product approach for reliability evaluation of stochastic flow networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1734-1749, November.
    6. Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
    7. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ning & Tian, Tian-zi & He, Jia-tao & Zhang, Chang-zhen & Yang, Jun, 2024. "Transmission reliability evaluation of wireless sensor networks considering channel capacity randomness and energy consumption failure," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Huang, Cheng-Fu & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2022. "Network reliability evaluation for multi-state computing networks considering demand as the non-integer type," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Alkaff, Abdullah & Qomarudin, Mochamad Nur & Bilfaqih, Yusuf, 2020. "Network reliability analysis: Matrix-exponential approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Bistouni, Fathollah & Jahanshahi, Mohsen, 2019. "Reliability-aware ring protection link selection in Ethernet ring mesh networks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majid Forghani-elahabad & Omar Mutab Alsalami, 2023. "Using a Node–Child Matrix to Address the Quickest Path Problem in Multistate Flow Networks under Transmission Cost Constraints," Mathematics, MDPI, vol. 11(24), pages 1-15, December.
    2. Huang, Cheng-Fu & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2022. "Network reliability evaluation for multi-state computing networks considering demand as the non-integer type," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Thi-Phuong Nguyen, 2021. "Assess the Impacts of Discount Policies on the Reliability of a Stochastic Air Transport Network," Mathematics, MDPI, vol. 9(9), pages 1-13, April.
    4. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    5. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).
    6. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    7. Yeh, Wei-Chang, 2021. "Novel binary-addition tree algorithm (BAT) for binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Tazi, Nacef & Châtelet, Eric & Bouzidi, Youcef, 2018. "How combined performance and propagation of failure dependencies affect the reliability of a MSS," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 531-541.
    9. Yeh, Wei-Chang & Hao, Zhifeng & Forghani-elahabad, Majid & Wang, Gai-Ge & Lin, Yih-Lon, 2021. "Novel Binary-Addition Tree Algorithm for Reliability Evaluation of Acyclic Multistate Information Networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Paweł Marcin Kozyra, 2020. "Analysis of minimal path and cut vectors in multistate monotone systems and use it for detection of binary type multistate monotone systems," Journal of Risk and Reliability, , vol. 234(5), pages 686-695, October.
    11. Chakraborty, Suparna & Goyal, N.K. & Mahapatra, S. & Soh, Sieteng, 2020. "A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Lin, Yi-Kuei, 2010. "Reliability evaluation of a revised stochastic flow network with uncertain minimum time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1253-1258.
    14. Jinlei Qin & Zheng Li, 2019. "Reliability and Sensitivity Analysis Method for a Multistate System with Common Cause Failure," Complexity, Hindawi, vol. 2019, pages 1-8, May.
    15. Yeh, Wei-Chang, 2020. "A new method for verifying d-MC candidates," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Yeh, Wei-Chang, 2008. "A simple minimal path method for estimating the weighted multi-commodity multistate unreliable networks reliability," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 125-136.
    17. Guopeng Song & Hao Chen & Bo Guo, 2014. "A Layered Fault Tree Model for Reliability Evaluation of Smart Grids," Energies, MDPI, vol. 7(8), pages 1-23, July.
    18. Niu, Yi-Feng & Song, Yi-Fan & Xu, Xiu-Zhen & Zhao, Xia, 2022. "Efficient reliability computation of a multi-state flow network with cost constraint," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    19. Esha Datta & Neeraj Kumar Goyal, 2017. "Sum of disjoint product approach for reliability evaluation of stochastic flow networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1734-1749, November.
    20. Emmers, Glenn & Van Acker, Tom & Driesen, Johan, 2024. "A semi-Markovian approach to evaluate the availability of low voltage direct current systems with integrated battery storage," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:173:y:2018:i:c:p:23-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.