IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v228y2014i2p127-138.html
   My bibliography  Save this article

Accelerated degradation tests for reliability estimation of a new product: A case study for washing machines

Author

Listed:
  • Filippo De Carlo
  • Orlando Borgia
  • Mario Tucci

Abstract

Accelerated degradation test is a valuable technique able to provide information on the duration of highly reliable products. It is widely used in electronics, where component life often cannot be estimated in an acceptable time with the classic reliability estimation techniques. In the mechanical engineering sector, however, accelerated degradation tests are not so common. The purpose of this study is to evaluate the applicability of accelerated degradation test methodology to a new mechanical subassembly of a washing machine. In particular, we tried to identify which was the most appropriate degradation parameter, choosing among three possible alternatives. The methodology was applied to the new oscillating group of a washing machine, with oversized dimensions and innovative materials. The first selection of elements that could be monitored initially provided three parameters: the drum deformation, the bearing temperature and the vibrations of the rotation shaft. The research allowed the identification of the deformation as the most appropriate parameter for the reliability estimation of the oscillating unit. The originality of this study lies in the fact that accelerated degradation tests of washing machines is not discussed in earlier studies. In addition, the application of such methodology to select the best from three different parameters is not studied earlier. In this study, another peculiarity of accelerated degradation test has been emphasized: it is possible to quickly enrich the know-how on a new product, allowing an in-depth knowledge of new elements, in far more rapid speed than using the traditional approach.

Suggested Citation

  • Filippo De Carlo & Orlando Borgia & Mario Tucci, 2014. "Accelerated degradation tests for reliability estimation of a new product: A case study for washing machines," Journal of Risk and Reliability, , vol. 228(2), pages 127-138, April.
  • Handle: RePEc:sae:risrel:v:228:y:2014:i:2:p:127-138
    DOI: 10.1177/1748006X13500650
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X13500650
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X13500650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Filippo De Carlo, 2013. "Reliability and Maintainability in Operations Management," Chapters, in: Massimiliano M. Schiraldi (ed.), Operations Management, IntechOpen.
    2. Bae, Suk Joo & Kuo, Way & Kvam, Paul H., 2007. "Degradation models and implied lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 601-608.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
    3. Li, Zan & Wang, Fengming & Wang, Chengjie & Hu, Qingpei & Yu, Dan, 2021. "Reliability modeling and evaluation of lifetime delayed degradation process with nondestructive testing," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Peihua Jiang, 2022. "Statistical Inference of Wiener Constant-Stress Accelerated Degradation Model with Random Effects," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    5. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2019. "A new reliability analysis method for load-sharing k-out-of-n: F system based on load-strength model," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 152-165.
    6. Keedy, Elias & Feng, Qianmei, 2012. "A physics-of-failure based reliability and maintenance modeling framework for stent deployment and operation," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 94-101.
    7. Wang, Lizhi & Pan, Rong & Li, Xiaoyang & Jiang, Tongmin, 2013. "A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 38-47.
    8. Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    10. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    11. Zhang, Jianchun & Li, Lei & Chen, Zhiwei, 2021. "Strength–redundancy allocation problem using artificial bee colony algorithm for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    12. Dejing Kong & Lirong Cui, 2016. "Bayesian inference of multi-stage reliability for degradation systems with calibrations," Journal of Risk and Reliability, , vol. 230(1), pages 18-33, February.
    13. Ching, Jianye & Leu, Sou-Sen, 2009. "Bayesian updating of reliability of civil infrastructure facilities based on condition-state data and fault-tree model," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1962-1974.
    14. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    15. Wang, Jia & Bai, Guanghan & Li, Zhigang & Zuo, Ming J., 2020. "A general discrete degradation model with fatal shocks and age- and state-dependent nonfatal shocks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:228:y:2014:i:2:p:127-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.