IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v226y2012i1p44-50.html
   My bibliography  Save this article

Wind generation’s contribution to supporting peak electricity demand – meteorological insights

Author

Listed:
  • D J Brayshaw
  • C Dent
  • S Zachary

Abstract

Wind generation’s contribution to meeting extreme peaks in electricity demand is a key concern for the integration of wind power. In Great Britain (GB), robustly assessing this contribution directly from power system data (i.e. metered wind-supply and electricity demand) is difficult as extreme peaks occur infrequently (by definition) and measurement records are both short and inhomogeneous. Atmospheric circulation-typing combined with meteorological reanalysis data is proposed as a means to address some of these difficulties, motivated by a case study of the extreme peak demand events in January 2010. A preliminary investigation of the physical and statistical properties of these circulation types suggests that they can be used to identify the conditions that are most likely to be associated with extreme peak demand events. Three broad cases are highlighted as requiring further investigation. The high-over-Britain anticyclone is found to be generally associated with very low winds but relatively moderate temperatures (and therefore moderate peak demands, somewhat in contrast to the classic low-wind cold snap that is sometimes apparent in the literature). In contrast, both longitudinally extended blocking over Scotland/Scandinavia and latitudinally extended troughs over western Europe appear to be more closely linked to the very cold GB temperatures (usually associated with extreme peak demands). In both of these latter situations, wind resource averaged across GB appears to be more moderate.

Suggested Citation

  • D J Brayshaw & C Dent & S Zachary, 2012. "Wind generation’s contribution to supporting peak electricity demand – meteorological insights," Journal of Risk and Reliability, , vol. 226(1), pages 44-50, February.
  • Handle: RePEc:sae:risrel:v:226:y:2012:i:1:p:44-50
    DOI: 10.1177/1748006X11417503
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X11417503
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X11417503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    2. Oswald, James & Raine, Mike & Ashraf-Ball, Hezlin, 2008. "Will British weather provide reliable electricity?," Energy Policy, Elsevier, vol. 36(8), pages 3202-3215, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heinen, Steve & Turner, William & Cradden, Lucy & McDermott, Frank & O'Malley, Mark, 2017. "Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis," Energy, Elsevier, vol. 127(C), pages 136-154.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    2. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    3. Früh, Wolf-Gerrit, 2013. "Long-term wind resource and uncertainty estimation using wind records from Scotland as example," Renewable Energy, Elsevier, vol. 50(C), pages 1014-1026.
    4. Leahy, P.G. & Foley, A.M., 2012. "Wind generation output during cold weather-driven electricity demand peaks in Ireland," Energy, Elsevier, vol. 39(1), pages 48-53.
    5. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    6. repec:spo:wpecon:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    7. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Post-Print hal-03461120, HAL.
    8. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.
    9. Coker, Phil & Barlow, Janet & Cockerill, Tim & Shipworth, David, 2013. "Measuring significant variability characteristics: An assessment of three UK renewables," Renewable Energy, Elsevier, vol. 53(C), pages 111-120.
    10. Gorg Abdelmassih & Mohammed Al-Numay & Abdelali El Aroudi, 2021. "Map Optimization Fuzzy Logic Framework in Wind Turbine Site Selection with Application to the USA Wind Farms," Energies, MDPI, vol. 14(19), pages 1-15, September.
    11. Ely, Caroline R. & Brayshaw, David J. & Methven, John & Cox, James & Pearce, Oliver, 2013. "Implications of the North Atlantic Oscillation for a UK–Norway Renewable power system," Energy Policy, Elsevier, vol. 62(C), pages 1420-1427.
    12. repec:hal:wpspec:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    13. repec:spo:wpmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    14. Commin, Andrew N. & Davidson, Magnus W.H. & Largey, Nicola & Gaffney, Paul P.J. & Braidwood, David W. & Gibb, Stuart W. & McClatchey, John, 2017. "Spatial smoothing of onshore wind: Implications for strategic development in Scotland," Energy Policy, Elsevier, vol. 109(C), pages 36-48.
    15. Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
    16. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    17. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    18. Elliston, Ben & Riesz, Jenny & MacGill, Iain, 2016. "What cost for more renewables? The incremental cost of renewable generation – An Australian National Electricity Market case study," Renewable Energy, Elsevier, vol. 95(C), pages 127-139.
    19. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    20. Mirlatifi, A.M. & Egelioglu, F. & Atikol, U., 2015. "An econometric model for annual peak demand for small utilities," Energy, Elsevier, vol. 89(C), pages 35-44.
    21. Michael Jefferson, 2013. "A renewable energy future?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 10, pages 254-269, Edward Elgar Publishing.
    22. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    23. Katinas, Vladislovas & Sankauskas, Donatas & Markevičius, Antanas & Perednis, Eugenijus, 2014. "Investigation of the wind energy characteristics and power generation in Lithuania," Renewable Energy, Elsevier, vol. 66(C), pages 299-304.
    24. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:226:y:2012:i:1:p:44-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.